

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE STRUCTURE FOR B.Tech w.e.f A.Y 2020-21

SEMESTER I

Category	Course Title		Contact I	week	Credits	
		L	Т	P	Total	
HS	English	2	0	0	2	2
BS	Algebra & Calculus	3	1	0	4	4
BS	Chemistry for Mechanical Engineering	3	0	0	3	3
ES	Problem Solving & Programming	3	0	0	3	3
ES	Engineering Drawing	0	1	4	5	3
BS	Chemistry for Mechanical Engineering Lab	0	0	3	3	1.5
HS	English Language Lab	0	0	3	3	1.5
ES	Problem Solving & Programming Lab	0	0	3	3	1.5
MC	Mandatory course I: Induction Program	I				
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	Du	During the Semester (20 points)			
	Total	11	2	16	29	19.5

SEMESTER II

Category	Course Title		Contact P	Credits		
		L	Т	Р	Total	
BS	Vector calculus, Complex variables & Transforms	3	1	0	4	4
BS	Physics for Mechanical Engineering	3	0	0	3	3
ES	Basic Electrical & Electronics Engineering	3	0	0	3	3
ES	Material Science	3	0	0	3	3
BS	Physics for Mechanical Engineering Lab	0	0	3	3	1.5
ES	Basic Electrical & Electronics Engineering Lab	0	0	2	2	1
ES	Engineering & IT Workshop	0	0	4	4	2
ES	Material Science Lab	0	0	2	2	1
HS	Oral Communications Skills Lab	0	0	2	2	1
MC	Mandatory course II	2	0	0	2	0
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	D	uring the S	points		
	Total	14	1	16	31	19.5

SEMESTER III

Category	Course Title		Contact	week	Credits	
		L	Т	Р	Total	
BS	Probability, Statistics & Numerical methods	3	0	0	3	3
ES	Engineering Mechanics	2	1	0	3	3
ES	Thermodynamics	3	0	0	3	3
PC	Manufacturing Processes	3	0	0	3	3
РС	Fluid Mechanics & Hydraulic Machines	3	0	0	3	3
ES	Computer Aided Drafting and Modeling Lab	0	0	3	3	1.5
PC	Manufacturing Process Lab	0	0	3	3	1.5
PC	Fluid Mechanics & Hydraulic Machines Lab	0	0	3	3	1.5
SC	Career competency Development I	0	0	2	2	1
SC	Value added course/Certificate course I	0	0	0	0	1
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	During the Semester			g the Semester (2	0 points)
	Total	14	1	14	29	21.5

SEMESTER IV

Category	Course Title		Contact Pe	Credits		
		L	Т	Р	Total	
PC	Thermal Engineering	3	0	0	3	3
PC	Kinematics of Machinery	3	0	0	3	3
РС	Mechanics of Materials	2	1	0	3	3
РС	Metal Forming Processes	3	0	0	3	3
OE	Open Elective I	3	0	0	3	3
РС	IC Engines Lab	0	0	3	3	1.5
РС	Mechanics of Materials Lab	0	0	3	3	1.5
РС	Computer Aided Machine Drawing	0	0	3	3	1.5
SC	Career competency Development II	0	0	2	2	1
SC	Value added course/Certificate course II	0	0	0	0	1
MC	Mandatory course III	2	0	0	2	0
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	During the Semester(20 points				
	Total	16	1	14	31	21.5

SEMESTER V

Category	Course Title		Contact Periods per week				
		L	Т	Р	Total		
РС	Thermal Power Systems	3	0	0	3	3	
РС	Design of Machine Elements	3	0	0	3	3	
PC	Metal Cutting & Machine Tools	3	0	0	3	3	
PE	Professional Elective I	3	0	0	3	3	
OE	Open Elective II	3	0	0	3	3	
PC	Design Thinking & Product Innovation Lab	0	0	3	3	1.5	
PC	Metal Cutting & Machine Tools Lab	0	0	3	3	1.5	
SC	Career competency Development III	0	0	2	2	1	
SC	Value added course/Certificate course III	0	0	0	0	1	
PR	Internship I/on job training/Com Ser Project	0	0	0	0	1.5	
	Counselling/Mentoring	0	0	1	1	0	
	Sports/Hobby Clubs/Activities	0	0	2	2	0	
	Activity Point Programme	I	During the S	emester (20 p	oints		
	Total	15	0	11	26	21.5	

SEMESTER VI

Category	Course Title		Contact P	Credits		
		L	Т	Р	Total	
РС	Dynamics of Machinery	3	0	0	3	3
РС	Design of Transmission Systems	3	0	0	3	3
РС	Heat and Mass Transfer	2	0	0	2	2
PC	Computer Integrated Manufacturing	3	0	0	3	3
PE	Professional Elective II	3	0	0	3	3
OE	Open Elective III	3	0	0	3	3
РС	Heat Transfer Lab	0	0	2	2	1
РС	CAD/CAM Lab	0	0	3	3	1.5
SC	Career competency Development IV	0	0	2	2	1
SC	Value added course/Certificate course IV	0	0	0	0	1
MC	Mandatory course IV	2	0	0	2	0
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	During the Semester(20 points		oints		
	Total	19	0	10	29	21.5

SEMESTER VII

Category	Course Title		Contact Pe	Credits		
		L	Т	Р	Total	
PC	Metrology & Instrumentation	3	0	0	3	3
HE	Humanities and Social Science Elective	2	0	0	2	2
PE	Professional elective III	3	0	0	3	3
PE	Professional elective IV	3	0	0	3	3
PE	Professional elective V	3	0	0	3	3
OE	Open Elective IV	3	0	0	3	3
PC	Metrology & Instrumentation Lab	0	0	3	3	1.5
ES	Software Tools Lab	0	0	2	2	1
SC	Career competency Development V	0	0	2	2	1
SC	Skill development Training	0	0	2	2	1
PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5
	Counselling/Mentoring	0	0	1	1	0
	Sports/Hobby Clubs/Activities	0	0	2	2	0
	Activity Point Programme	D	ouring the Se	mester(20 p	oints	
	Total	17	0	12	29	23

SEMESTER VIII

Category	Course Title		Contact Periods per week			Credits
		L	Т	Р	Total	
PR	Project work, seminar and internship	0	0	0	0	12
	Activity Point Programme	During the	During the Semester(20 points)			
		0	0	0	0	12

SUBJECTS FOR OPEN ELECTIVES (OE)

S.No	SUBJECTS
1	Engineering Optimization
2	Mechatronics
3	Industrial Engineering and Management
4	Automobile Engineering
5	Basics of Mechanical Engineering
6	Automation & Robotics
7	Engineering materials
8	Total Quality Management
9	Industrial Safety and Hazard Management

PROFESSIONAL ELECTIVE (PE)

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

ELECTIVE	Professional Elective-1 (V SEM)	Professional Elective-2(VI	Professional Elective-3(VII SEM)	Professional Elective-4(VII SEM)	Professional Elective-5(VII SEM)
TRACK/GROUP	Elective-1 (V SEM)	SEM)	Liective-5(VII SEIVI)	Liecuve-4(vii SEM)	Elective-5(VII SEM)
Design Engineering	Product Design & Development	Design Of Rotating Elements	Finite Element Methods	Computational Fluid Dynamics	Design of Heat Exchangers
Thermal Engineering	Gas turbines and jet propulsion	Power plant Engineering	Refrigeration & Air Conditioning	Hydraulic & Pneumatics Systems	Automobile Engineering
Production Engineering	Design for Manufacturing	Modern Manufacturing Methods	Automation In Manufacturing	Surface Engineering	Manufacturing & Inspection Of Gears
Industrial Engineering	Management Science	Engineering Optimization	Industrial Engineering	Production & Operation Management	Industrial Management
CAD/CAM	Flexible Manufacturing Systems	Mechatronics	Intelligent Manufacturing Systems	Automation & Robotics	Computer Aided Process Planning
Materials Engineering	Principles of Metal Extraction & Refining	Metallurgy	Composite Materials	Nano materials	Smart Materials

SUBJECTS FOR HONORS DEGREE

S.NO.	COURSE NAME	L-T-P	CR	OFFERED TO
1	Industrial Tribology	3-1-0	4	ME
2	Non Destructive Testing	3-1-0	4	ME
3	Supply Chain Management	3-1-0	4	ME
4	Reverse Engineering and Rapid Prototyping	3-1-0	4	ME
1	Robotics: Modelling, Analysis and Control	3-1-0	4	ME
2	Mechanical Handling Systems	3-1-0	4	ME
3	Theory and Design of Control Systems	3-1-0	4	ME
4	Smart Materials for Mechatronic Applications	3-1-0	4	ME
1	Automobile Engine Design	3-1-0	4	ME
2	Automotive Transmission	3-1-0	4	ME
3	Autotronics & Safety	3-1-0	4	ME
4	Alternative Energy Sources for Automobiles	3-1-0	4	
1	Advanced Thermodynamics	3-1-0	4	ME
2	Advanced IC Engines	3-1-0	4	ME
3	Jet Propulsion and rocket Engineering	3-1-0	4	ME
4	Computational Fluid Dynamics	3-1-0	4	ME

SUBJECTS FOR MINOR DEGREE

S.No	Subject	L-T-P	Credit
1	Engineering Mechanics	3-1-0	4
2	Thermal Engineering	3-1-0	4
3	Production Technology	3-1-0	4
4	Fundamentals of Engineering Design	3-1-0	4
5	Production Planning and control	3-1-0	4
6	Materials Technology	3-1-0	4
7	CAD/CAM	3-1-0	4
8	Renewable Energy Sources	3-1-0	4

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	SUBJECT	CREDITS
I SEM	English	2
	English Language Lab	1.5
II SEM	Oral Communications Skills Lab	1
VII Sem	Humanities and Social Science Elective	
	TOTAL	6.5

BASIC SCIENCES (BS)

SEMESTER	SUBJECT	CREDITS
	Algebra & Calculus	4
I SEM	Chemistry for mechanical engineering	3
	Chemistry for mechanical engineering lab	1.5
	Vector calculus, Complex variables & Transforms	4
II SEM	Physics for Mechanical Engineering	3
	Physics for Mechanical Engineering Lab	1.5
III SEM	III SEM Probability, Statistics & Numerical methods	
	TOTAL	20

SEMESTER	SUBJECT	CREDITS
	Problem Solving & Programming	3
I SEM	Engineering Drawing	3
	Problem Solving & Programming Lab	1.5
	Material Science	3
II SEM	Basic Electrical & Electronic Engineering	3
	Engineering & IT Workshop Lab	2
	Material Science Lab	1
	Basic Electrical and Electronic & Engineering Lab	1
	Engineering Mechanics	3
III SEM	Thermodynamics	3
	Computer Aided Drafting and Modelling Lab	1.5
VII SEM	Software Tools Lab	1
	TOTAL	26

ENGINEERING SCIENCES (ES)

PROFESSIONAL CORE (PC)

SEMESTER	SUBJECT						
	Manufacturing Processes						
ш	Fluid Mechanics & Hydraulic Machines		3				
111	Manufacturing Processes Lab						
	Fluid Mechanics & Hydraulic Machines Lab(2+2)	9	1.5				
	Thermal Engineering		3				
	Kinematics of Machinery		3				
	Mechanics of Materials		3				
IV	Metal Forming Processes		3				
	IC EnginesLab		1.5				
	Computer Aided Machine Drawing Lab		1.5				
	Mechanics of Materials Lab (4+3)	16.5	1.5				
	Thermal Power Systems						
	Design of Machine Elements						
V	Metal Cutting & Machine Tools						
	Design Thinking & Product Innovation Lab						
	Metal Cutting & Machine Tools (3+2)	12	1.5				
	Dynamics of Machinery						
	Design of Transmission Systems						
VI	Heat & Mass Transfer						
	Computer Integrated Manufacturing						
	Heat Transfer Lab		1				
	CAD/CAM Lab (4+2)	13.5	1.5				
VII	Metrology & Instrumentation						
	Metrology & Instrumentation Lab (1+1) 4.5		1.5				
	7	TOTAL	55.5				

Professional Core: Theory Subjects: 14 Labs:10

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	CREDITS
V Sem	Professional elective 1	3
VI Sem	Professional elective 2	3
VII Sem	Professional elective 3	3
VII Sem	Professional elective 4	3
VII Sem	Professional elective 5	3
	ΤΟΤΑ	L 15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective 1	3
V Sem	Open Elective 2	3
VI Sem	Open Elective 3	3
VII Sem	Open Elective 4	3
	TOTAL	12

SKILLED ORIENTED COURSES (SC)

SEMESTER	SUBJECT	CREDITS		
III Sem	Career Competency Development I	1		
	Value added course/Certificate course I	1		
IV Sem	Career Competency Development II	1		
	Value added course/Certificate course II	1		
V Sem	Career Competency Development III	1		
	Value added course/Certificate course III	1		
VI Sem	I Sem Career Competency Development IV			
	Value added course/Certificate course IV	1		
VII Sem	VII Sem Career Competency Development V			
	skill development Training	1		
	TOTAL	10		

PROJECTS (PR)

SEMESTER	SUBJECT				
V Sem	Internship I/on job training/Com Ser Project	1.5			
VII Sem	Internship II/on job training/Com Ser Project				
VIII Sem	Project work, seminar and internship				
	TOTAL	15			

SL N O	SUBJECT AREA	CREDITS PER SEMESTER							Credits NECN	
		Ι	II	III	IV	V	VI	VII	VIII	_
1	HS	3.5	1							6.5
2	BS	8.5	8.5	3						20
3	ES	7.5	10	7.5				1		26
4	PC			9	16.5	12	13.5	4.5		55.5
5	PE					3	3	9		15
6	OE				3	3	3	3		12
7	SC			2	2	2	2	2		10
8	PR					1.5		1.5	12	15
9	MC									No credit
	TOTAL	19.5	19.5	21.5	21.5	21.5	21.5	23	12	160

SUBJECTS & SYLLABUS APPROVED BY BOS MEETING FROM DEPARTMENT OF MECHANICAL HELD ON 08-01-2021:

S.No	Name of the Subject	Sem/Branch	Category
	0	THER BRANCHES	
1	Engineering Graphics	I Sem Civil & CSE and II Sem ECE & EEE	ES
2	Engineering and IT Workshop (BoS: Mech & CSE)	I Sem EEE, Mech, CSE & ECE and II Sem Civil	ES
3	Engineering Mechanics	III Sem Civil & Mechanical	ES
	ME	CHANICAL BRANCH	
4	Engineering Drawing	I Sem Mechanical	ES
5	Material Science	II Sem Mechanical	ES
6	Material Science Lab	II Sem Mechanical	ES
7	Thermodynamics	III Sem Mechanical	ES
8	Manufacturing Processes	III Sem Mechanical	PC
9	Fluid Mechanics & Hydraulic Machines	III Sem Mechanical	PC
10	Computer Aided Drafting and Modeling Lab	III Sem Mechanical	ES
11	Manufacturing Process Lab	III Sem Mechanical	PC
12	Fluid Mechanics & Hydraulic Machines Lab	III Sem Mechanical	PC
13	Thermal Engineering	IV Sem Mechanical	PC
14	Kinematics of Machinery	IV Sem Mechanical	PC
15	Mechanics of Materials	IV Sem Mechanical	PC
16	Metal Forming Processes	IV Sem Mechanical	PC
17	IC Engines Lab	IV Sem Mechanical	PC
18	Mechanics of Materials Lab	IV Sem Mechanical	PC
19	Computer Aided Machine Drawing	IV Sem Mechanical	PC
	(OPEN ELECTIVES	
20	Engineering Optimization	NA	OE
21	Mechatronics	NA	OE
22	Industrial Engineering and Management	NA	OE
23	Automobile Engineering	NA	OE
24	Basics of Mechanical Engineering	NA	OE
25	Automation & Robotics	NA	OE
26	Engineering Materials	NA	OE
27	Total Quality Management	NA	OE
28	Industrial Safety and Hazard Management	NA	OE

	HONORS SUBJECTS						
29	Industrial Tribology	IV Sem Mechanical					
30	Non Destructive Testing	IV Sem Mechanical					
31	Supply Chain Management	IV Sem Mechanical					
32	Reverse Engineering and Rapid Prototyping	IV Sem Mechanical					
	MIN	NORS SUBJECTS	·				
33	Engineering Mechanics	NA					
34	Thermal Engineering	NA					
35	Production Technology	NA					
36	Fundamentals of Engineering Design	NA					
37	Production Planning and control	NA					
38	Materials Technology	NA					
39	CAD/CAM	NA					
40	Renewable Energy Sources	NA					

NARAYANA ENGINEERING COLLEGE :: GUDUR @. AUTONOMOUS

OTHER BRANCHES

		NARAY	ANA ENG	INEERING	COLLEGE:	GUDUR		
		E	ENGINEE	RING GRAP	HICS			R2020
Semester		Hours /	Week	Total hrs	Credits		Max Marks	I
	L	Т	Р		С	CIE	SEE	TOTAL
Ι	0	1	4	75	3	40	60	100
				OURSE CONT -A Manual D				
TA	ASK-1		Intro	duction and	Conic sectio	ons		10 H
Introduction Principles of I sizes and title Geometrical c method only. Conic S	Engineeri block, let onstructio	ng Graphics tering, BIS ons: simple o	s and their convention constructio	s, types of line	es and dimens on of Pentago	sioning me n, Hexagor	thods. n by general	l
TAS	SK2			Orthograph	ic Projection	ns		10 H
Objectives an		le of proje	etion	ormogruph	lie i rojectio			10 11
Projections of Projection of and two refere Projections of perpendicular TASK	straight ence plane f planes: and inclir	lines: F und s placed in Projection of	damental c first quadra of planes (T	oncepts, Line ant only, Friangle, Squar erence planes p	parallel, perj re, Pentagon,	Circle) par quadrant	rallel,	ed to one
Types of so		vhedra. So	olids of rev	•				
Projections perpendicular plane.	of reg	gular solid	s(Prisms,	Pyramio	ds, Cylinde s inclined to			
	TASK-4		Isometr	ic and Orthog	graphic view	S	10H	
		c views of cometric vie	lines, plan we to Orth		olids (Cube,			
				omputer Aide				
TASK-5	5		In	troduction to	o AutoCAD)	15	Н
Basic drawing moving, copy stretching, fill	ving, rota	ating, scali	ng, mirroi	ring, layers,	templates, p	olylines,	trimming,	extending,
TASK-6	6	Orth	ographic a	and Isometric	Projections		18	Н

	ormation of Isometric Projections into orthographic projections such as simple solids such
-	r, cone, square prism, pentagonal pyramid
Draw 3	D model of mechanical components such as Stepped block, Bush bearing,
	Total H: 75 H
	Text Book(s):
1.	Bhatt N.D. "Elementary Engineering Drawing", CharotarPublishers, 2014.
2.	Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
3.	K.L.Narayana&P.Kannaiah,EngineeringDrawing,3/e,ScitechPublishers,Chennai
	, 2012.
4.	Engineering Drawing by Dr AVS Sridhar Kumar, Dr Krishnaiah, T P Vara Prasad.
	"Spectrum education, Sun techno Publications, 2019
	Reference Book(s):
1.	Engineering Drawing and Graphic Technology -International Edition, Thomas E.
	French, Charles J. Vierck, Robert J. Foster, McGraw-Hill, 2014
2.	Venugopal.K "Engineering Drawing and Graphics", New Age International (P) Ltd., New Del 2010.

	NAR	AYANA F	NGINEE	RING CO	LLEGE:GU	JDUR		
			ENGI	NEERING	& IT WOR	K SHOP		R2020
	1	PART -	- A ENGI	NEERING	WORK SH	IOP		1
Semester		Hours /	Week	Total hrs	Credits	Max Marks		
	L T P C CIE SE TO E							
II	0	0	4	64	2	40	60	100
	C	OURSE C			S FOR PRA	CTICE)		
				Carpentr				
Familiarity with joints from out					vood workin	ig and mak	te followi	ng
		x 23 mm s	Sit wood s	IUCK				
a) Half – Lap job) Mortise and								
b) Wortise and	Tenon joint							
				-2 Fitting (
i.]Familiarity w M.S. stock	rith different	types of to	ols used in	n fitting and	l do the fittin	ig exercise	es out of 8	80 x 50 x 5 mr
a) V-fit b) Dov	etail fit							
ii) Bicycle tire j		l change of	two whee	ler tire				
	Trade -	3 Sheet M	etal Work	(6 H)				
Familiarity with					working. De	velopment	s of follo	wing sheet
metal job from				ineer metai	, or ning, De	veropinen	.5 01 10110	string sheet
a) Tapered tray	b) Conical f	funnel c)Br	azing					
	Trade -	4 Electric	al House	Wiring (6	H)			
Familiarities wi	ith different			0		efollowing	ç.	
electricalconnec a) Two lamps in switches		wo way sw	itch c) Tul	be light d) T	wo lamps in	ı parallel w	vith 3 pin	plug and
	Trade 5	5 - Plumbi	ng (Demo) (2 H)				
1. Introduction			0					
2. PVC Pipe th	read cutting	and makin	g single jo	int with cou	pling and ta	p connecti	on.	
3. Water show	er connectio	n with redu	icer coupli	ng				
		Trade	e-6 Plastic	Moulding	(Demo) (4]	H)		
1. Injection mo	ulding of pla	astic cap (d	emo)					
Trade-6 Solder	ring & Braz	zing (Demo	o) (2H)					
1.a)Soldering o	f Electric w	ire						
b) Brazing of co								
Worksho		gy"Vol-I20	jra Chouo		: ., Nirjar R .Promoters&			ts of

- 2. StevenS.Schmid,"Manufacturing KalpakjianS.and Engineering and
- Technology" 4th Edition, Pearson Education IndiaEdition,2002. P. Kannaiah &K. L. Narayana "Workshop manual" 2nd Ed., Scitechpublications 3. i. Pvt.Ltd.,Hyderabad,2008.

Reference Book(s): 1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

COURSE CONTENT FOR IT WORKSHOP

Task-1 Learn about Computer (4H)

Identify the internal parts of a computer and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task -2 Assembling a Computer (4H)

Disassemble and assemble the PC back to working condition. Troubleshoot the computer and identify working and non-working parts. Identify the problem correctly by various methods available (eg: beeps). Record the process of assembling and trouble-shooting a

computer.

Task-3 Install Operating system (4H)

Install Linux, any other operating system (including proprietary software) and make the system dual boot or multi boot. Record the entire installation process.

TASK-4 Operating system features (4H)

Record various features that are supported by the operating system(s) installed. Submit a report on it. Access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc.

Install new application software and record the installation process.

TASK-5 Word Processor (4H)

Create documents using the word processor tool. Tasks to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the colour, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Submit a report of the word processor considered.

Create documents using the word processor tool. Mail Merge in word processor for creating appointment orders for 10 employee records in excel.

TASK-6 Spreadsheet (4H)

To create, open, save the spreadsheet and format them as per the requirement. Some of the tasks to be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells, working with pivot tables and charts. Submit a report of the Spreadsheet application considered.

TASK-7 Presentations (4H)

To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show,Record slide show. Submit a report of the Presentation tool considered.

TASK-8 Wired network & Wireless network (4H)

Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire, Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test the cable using LAN tester, Connect two or more computers using cross and straight cables,

Configure the computers, share the data between the computers.

Additional Experiments:

TASK -1 IoT

Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD card, Connect the cables, Install Raspbian (or any other) operating system, Configure Wi-Fi, Remotely connect

to your Raspberry Pi.

TASK -2 OUTLOOK, MACROS

Practice the following tasks and submit report

A. Configure outlook and accessmails.

B. Create Macros in word and spreadsheettools

Text Book(s):

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting andMaintenance",2nd edition, Tata McGraw-Hill,2002

2. "MOS study guide for word, Excel, Powerpoint & Outlook Exams", Joan Lambert, JoyceCox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

1. Rusen, "Networking your computers and devices", PHI

2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

		NARAYA	NA ENG	GINEERING	G COLLEG	E: GUD	UR	
					RING MEC			R2020
Semester		Hours /	Week	Total	Credit		Max Mar	:ks
-	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	2 1		0	48	3	40	60	100
I			C	OURSE CO	NTENT			
	MODUI	LE – 1		Syster	m of Forces		8 H	[
Compositio	n and resolu	tion of fo	orces, par	allelogram 1	aw, principl	le of tra	nsmissibility,	types of for
-			-	-			•	couple, momen
•			-			-	•	coplanar for
I	MODULE -2	2		Frictio	n			08 H
Definition	of Friction ar	nd its appli	cations, a	angle of fricti	on, angle of	repose,	coefficient of	friction. Type
				0		-	locks on hori	• •
nclined pla		,	Ĩ	11				
<u>^</u>	MODULE-3			A 1	P			00 11
				Analysis of				08 H
	•	isses, analy	ysis of pla	ane trusses by	y method of	Joints, n	nethod of sect	ions & tension
coefficient	method.							
	MODULE-4	ļ		Centro	id			8 H
Definitio	on of Centroi	d & Centre	e of Grav	ity, Axes of S	Symmetry, I	Location	of Centroid o	f Rectangle,
Triangle, S	Semicircle, Q	uardrant a			•	-	on. Numerica	l problems on
			Centro	id of Compos	site sections.			
	MODULE-5	5		Moment Of	Inertia			8 H
Concept of	Moment of in	nertia, perp	pendicula	r axis theore	m, parallel a	xis theor	em, and mom	ent of inertia
of Rectangu	lar, Circular	, Semicirci	ılar, Qua	drant of a cir	cle Triangul	ar section	ns by method	of integration.
-	Problems on				-		2	e
				I				
	MODU	IF-6		Kinematics	& Kinetics		8 H	
				•			ectile, Relativ	
		<i>,</i>				t's princi	iple, Work-en	ergy method,
Impulse-mo	omentum equ	ation, Kine	etics of ci	ircular motio	n, Rotation.			
							Total	h: 48 h
							Total	n. 40 n
1 0 0 0 0	11			Text Book		T .	1.0000	
1. S SBha	avikatti, "Eng	gineering N	Aechanic	s", 4th editio	n, New Age	Internati	ional,2008.	
2. R.K. B	ansal, "A tex	t book of l	Engineeri	ing Mechanic	s", LaxmiPi	ublication	ns,2010	

R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications,2010
 IrvingShames,GKMRao, "EngineeringMechanics:Statics andDynamics", 4thedition, Pearson,

2009.

Reference Book(s):

1. BasudebBhattacharya., "EngineeringMechanics", 2ndedition, OxfordUniversityPress (India), 2015.

2. K L Kumar, VeenuKumar, "Engineering Mechanics", 4th edition, Tata McGrawHill,2010.

3. Engineering Mechanics, R.S.Khurmi, S.Chand, 2012.

NARAYANA ENGINEERING COLLEGE :: GUDUR -

MECHANICAL ENGINEERING SUBJECTS

NARAYANA ENGINEERING COLLEGE: GUDUR										
				ENGINE	ERING DR	AWING		R2020		
Semester		Hours /	Week	Total	Credits		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
Ι	0	1	4	75	3	40	60	100		
	COURSE CONTENT									
T	ASK – 1		Intro	duction &	Conic sec	tions		12 Hours		
Introduction	Introduction to Engineering Drawing: Principles of Engineering Drawing and their significance-									
various instruments used, drawing sheet sizes and title block, lettering, BIS conventions, types of										
lines and dim	lines and dimensioning methods.									
Geometrical	constructio	ons: simple	e constructi	ons, const	ruction of	Pentagon,	Hexagon b	y general		
method only.										
Conic Section	ons: Types	of conics:	Ellipse, P	arabola an	d Hyperbol	a (Eccentri	icity metho	d only),.		
Cycloid, Epi	cycloids an	d Hypocyc	loid,Involut	te						
Scales: Redu	iced and En	larged scal	es, Represe	entative frac	ction, Scale	s: plain, dia	gonal only.			
,	TASK -2			Orthogra	phic Projec	tions		12 Hours		
Objectives a			jection, Me	ethods of p	rojections,	Comparis	on betwe	en first		
angle and the	ird angle pi	rojection.								
Projections	of points: I	Projection of	of points pla	aced in diff	erent quadr	ants,				
Projection o	of straight]	lines: Fun	damental c	oncepts,]	Line paralle	el, perpen	dicular an	d inclined		
to one and ty		· ·		-	•					
Projections		-	-		-	-	-			
perpendicula		ed to one a	ind two refe				ant only			
	TASK-3				tions of S	olids		15 Hours		
Types of so	-				. 1. 1	10	•.1 •. •			
Projection	-		-		-					
perpendicula	r to one pla	ane and par	rallel to oth	ier plane, <i>P</i>	xis incline	a to one pi	ane and par	rallel to		
other plane.		C 4 ⁹		J D	- 1 4	- f Cf-		10.11		
	ASK-4		ns of Solid		_			12 Hours		
Sections of			ectional vie	ews of sol	ids, cutting	g planes, S	Sections of	Prism,		
Pyramids, Cy	•					a 11 1 5 1	<u> </u>			
Developmen		es: Develo	pment of Si	urfaces of r	ight regular	Solids-Pri	sm, Cylinde	er,		
Pyramid, Co	ne									
	TASK-5		Isometri	c and Ort	nographic	Projection	8	12Hours		
Isometric	Projection	s: Princip	les, Isome	tric scale,	Isometric	views, (Conventions	,		
Isometric vie	ews of lines.	, planes, si	mple solids	(Cube, Cyl	inder, Cone	e),				
Conversion	n of Isomet	ric views in	n to Orthog	raphic view	vs.					
TASK-	6			Persp	ective Proje	ections		12 Hours		
Perspective	Projection	s: Perspect	tive views o	of Line. Pla	nes (sauare	, circular. r	entagon) ai	nd Simple		
solids (Squar		-				-		P		
	r, 11	PJ		, - , - , - , - , - , - , - , - , - , -	,			75 hours		
						10	tal hours:			

Text Book(s):

- 1. Bhatt N.D. "Elementary Engineering Drawing", CharotarPublishers, 2014.
- 2. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 3. K.L. Narayana & P. Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, Chennai, 2012.
- 4. Engineering Drawing by Dr AVS Sridhar Kumar, Dr Krishnaiah, T P Vara Prasad., Spectrum education, Sun techno Publications,2019

Reference Book(s):

- 1. Engineering Drawing and Graphic Technology-International Edition, Thomas E. French, Charles J. Vierck, Robert J. Foster, McGraw-Hill, 2014
- **2.** K.Venugopal "Engineering Drawing and Graphics", New Age International (P)Ltd., New Delhi, 2010

						DUR		
				Mat	terial Scienc	e		R2020
Semester		H / V	Veek	Total	Credit		Max Marks	2
Semester	L		P	hrs	Clean	CIE	SEE	TOTAL
II	3	0	0	48	3	40	60	100
			COU	JRSE CON	TENT			
	MODUI	LE – 1		Structure o	f Metals		8 H	
			•		etals, grain a ermination of	0		effect of
-				-	solid solution	-		
MC	DULE -2		Equi	librium of 1	Diagrams			8 H
		nethods of	-		ilibrium di	agrams. Is		
	otropy, eutend	_		ctions, phas	se rule, relat	ionship be	tween equil	ibrium
N								
10.	IODULE-3	3		Metals &	z Alloys			8 H
			re and prop		z Alloys hite Cast iror	n, Malleabl		
Cast Iro cast iron,	ns and Stee Spheriodal	e ls : Structu l graphite ca	ast iron, All	erties of W	hite Cast iron	tion of stee	e Cast iron, els, structure	grey e and
Cast Iro cast iron,	ns and Stee Spheriodal	e ls : Structu l graphite ca	ast iron, All	erties of W	hite Cast iron	tion of stee	e Cast iron, els, structure	grey e and
Cast Iro cast iron, properties	ns and Stee Spheriodal	e ls : Structu l graphite ca bon steels,	ast iron, All Low alloy s	erties of W	hite Cast iron	tion of stee	e Cast iron, els, structure	grey e and
Cast Iro cast iron, properties Non-ferro	ns and Stee Spheriodal of plain car us Metals a	els :Structu l graphite ca bon steels, and Alloys	ast iron, All Low alloy s	erties of W oy cast iron steels, Hadf	hite Cast iron	tion of stee ese steels, t	e Cast iron, els, structure tool and die	grey e and steels.
Cast Iro cast iron, properties Non-ferro Structure a alloys.	ns and Stee Spheriodal of plain car us Metals a	els :Structu l graphite ca bon steels, and Alloys es of coppe	ast iron, All Low alloy s : r and its all	erties of Wi loy cast iron steels, Hadf oys, Alumin	hite Cast iron ns. Classifica ield mangan	tion of stee ese steels, r alloys, Tita	e Cast iron, els, structure tool and die	grey e and steels.
Cast Iro cast iron, properties Non-ferro Structure a alloys.	ns and Stee Spheriodal of plain car us Metals a nd propertie	els :Structu l graphite ca bon steels, and Alloys es of coppe	ast iron, All Low alloy s : r and its all He	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme	hite Cast iron ns. Classifica ield mangan nium and its	tion of stee ese steels, t alloys, Tita	e Cast iron, els, structure tool and die anium andits	grey e and steels.
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a	ns and Stee Spheriodal of plain car us Metals a nd propertion IODULE-4 lloying ele	els :Structu l graphite ca bon steels, and Alloys es of coppe	ast iron, All Low alloy s : r and its all He ron – Iron	erties of Wi loy cast iror steels, Hadf oys, Alumin at treatme carbon sys	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys	tion of stee ese steels, t alloys, Tita ing, norma	e Cast iron, els, structure tool and die anium andits lizing, Haro	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a	ns and Stee Spheriodal of plain car us Metals a nd propertie IODULE-4 lloying elea grams, tem	els :Structu l graphite ca bon steels, and Alloys es of coppe	ast iron, All Low alloy s : r and its all He ron – Iron	erties of Wi loy cast iror steels, Hadf oys, Alumin at treatme carbon sys	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal	tion of stee ese steels, t alloys, Tita ing, norma	e Cast iron, els, structure tool and die anium andits lizing, Haro	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment,	ns and Stee Spheriodal of plain car us Metals a nd propertion IODULE-4 lloying elem grams, tem	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit	erties of Wi loy cast iror steels, Hadf oys, Alumin at treatme carbon sys	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin	tion of stee ese steels, t alloys, Tita ing, norma	e Cast iron, els, structure tool and die anium andits lizing, Haro s, Age har	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment,	ns and Stee Spheriodal of plain car us Metals a nd propertie IODULE-4 lloying elea grams, tem	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit	erties of Wi loy cast iror steels, Hadf oys, Alumin at treatme carbon sys sy, surface ramic & Pl	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin astic	tion of stee ese steels, t alloys, Tita ing, norma	e Cast iron, els, structure tool and die anium andits lizing, Haro	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment,	ns and Stee Spheriodal of plain car us Metals a nd propertion IODULE-4 lloying elem grams, tem	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , I	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme carbon sys cy, surface ramic & Pl Materials	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin astic	alloys, Tita	e Cast iron, els, structure tool and die anium andits lizing, Haro s, Age har	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment, M Ceramic	ns and Stee Spheriodal of plain car us Metals a nd propertie IODULE-4 lloying eler grams, tem IODULE-5	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit Cer ne ceramic	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme carbon sys cy, surface ramic & Pl Materials	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin	alloys, Tita	e Cast iron, els, structure tool and die anium andits llizing, Haro s, Age har 8 H	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment, M Ceramic F definition, Plastics:T	ns and Stee Spheriodal of plain car us Metals a nd propertie IODULE-4 lloying elect grams, tem IODULE-5 materials: properties hermo set p	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H Crystallin and applica lastics & T	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit Cer ne ceramic	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme carbon sys cy, surface ramic & Pl <u>Materials</u> cs, glasses,	hite Cast iron hite C	alloys, Tita	e Cast iron, els, structure tool and die anium andits llizing, Haro s, Age har 8 H	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment, M Ceramic F definition, Plastics:T	ns and Stee Spheriodal of plain car us Metals a nd propertion IODULE-4 lloying eler grams, tem IODULE-5 materials: properties	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H Crystallin and applica lastics & T	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit Cer ne ceramic ation hermo plast	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme carbon sys cy, surface ramic & Pl <u>Materials</u> cs, glasses,	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin astic cermets, abr	alloys, Tita	e Cast iron, els, structure tool and die anium andits llizing, Haro s, Age har 8 H	grey e and steels. 8 8 H dening,
Cast Iro cast iron, properties Non-ferro Structure a alloys. M Effect of a TTT diag treatment, M Ceramic f definition, Plastics:T M	ns and Stee Spheriodal of plain car us Metals a nd propertie IODULE-4 lloying elea grams, tem IODULE-5 materials: properties hermo set p IODULE-6 ite Materia osites, par	els :Structu l graphite ca bon steels, and Alloys es of coppe ments on I pering , H crystallin and applica lastics & T	ast iron, All Low alloy s : r and its all He ron – Iron Hardenabilit Cer ne ceramic ation hermo plast Com	erties of Wi loy cast iron steels, Hadf oys, Alumin at treatme carbon sys cy, surface ramic & Pl <u>Materials</u> cs, glasses, tics- applica posite Mat	hite Cast iron ns. Classifica ield mangan nium and its nt of Alloys tem, Anneal - hardenin astic cermets, abr	alloys, Tita alloys, Tita ing, norma ing methods asive m	e Cast iron, els, structure tool and die anium andits llizing, Haro s, Age har 8 H aterials, - 8 H nponent ma	grey e and steels. 8 H dening, dening facture

Text Book(s):

1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017

2. A Text of Essential of Materials science and engineering/ DonaldR.Askeland/Thomson.2013 .3.Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

Reference Book(s):

1. Science of Engineering Materials / B.K.Agarwal,2017.

2. Engineering materials and metallurgy/R. K. Rajput/S.Chand,2015.

3. Engineering Materials and Their Applications - R. A Flinn and P K Trojan / JaicoBooks 1995

	l	NARAYA	NA ENGI	NEERING	COLLEG	E: GUDU	R	
			Materi	al Science	Lab			R2020
Semester		Hours /	Week	Total	Credits		Max Mar	ks
Semester	L	T	P	hrs	C	CIE	SEE	TOTAL
II	0	0	2	32	1	40	60	100
				RSE CON	TENT			
					hrs)			
Study	v of gener	al procedu	re for speci	imen prepa	ration and N	Aetallurgic	al Microsco	pe.
			Ta	ask -2 (2 h	irs)			
Pre	naration a	and study o	f the Micro	Structure	of pure met	als like Iro	n, Cu and A	1
				ask -3 (2 h	-			1.
	P	reparation			ostructure of	f Mild stee	ls.	
		1	· · · ·	ask -4 (2 h				
	Pren	aration and		-	ructure of lo	w carbon s	steel.	
	110		<u> </u>	ask -5 (2 h				
	Pren	aration and			acture of high	oh carbon s	steels	
	Пере		•	ASK-6 (2 h			50013.	
		St			s of Cast Iro	on.		
			•	TASK-7				
		Study of n	nicrostructu		ferrous allo	ys. (2 hrs)		
			T	ASK-8(2 h	rs)			
		Study			Heat-treated	l steels.		
			т	ASK-9(2 h	(re)			
		Meta		,	analysis of I	Brass		
			U	SK-10 (2	•			
		Metal			nalysis of B	ronze.		
			TA	ASK-11(3)	nrs)			
		Hardena	bility of ste	el by Jomin	ny End Que	nch Test.		
			TA	ASK-12(4)	nrs)			
	Fi	nd out the	hardness of	various tre	eated and ur	treated ste	els.	
			TA	SK-13 (2	hrs)			
	S	tudy of cry	stal structu	re of BCC,	FCC and H	ICP crystal	ls.	
			TA	SK -14(2	hrs)			
	Demo	nstration o	f microstru	cture chara	cteristic by	Image Ana	alyzer.	
				ext Book(s				
	•			ney H.Avei				
				and enginee D.Kodgire,2	•	ldR.Askela	nd/Thomson	n.2013

Reference Book(s):

1. Science of Engineering Materials/Agarwal

2. Engineering materials and metallurgy/R. K.Rajput/S.Chand.

3. Engineering Materials and Ther Applications – R. A Flinn and P K Trojan /JaicoBooks

NARAYANA ENGINEERING COLLEGE:GUDUR									
THERMODYNAMICS									
Semester		Hours / Week Total Credits Max Marks							
	L	L T P hrs C CIE SEE							
III	3 0 0 48 3 40 60								

		COURSE CONTENT	
MODULE – 1		WORK AND HEAT TRANSFER	08 Hours
Fundamental Concepts an	nd De	finitions: Concept of continuum, microscopic and n	nacroscopic approach,
system, control volume, dir	nensic	ons and units, force, weight, State, path, process, isola	ated system, adiabatic
system, thermodynamicequi	ilibriur	n.	
Work And Heat Transfer	: Ther	modynamic definition of work, different forms of wor	k, path function, Heat,
temperature and zeroth law	of ther		
MODULE -2		FIRST LAW OF THERMODYNAMICS	08 Hours
First Law of Thermodyna	amics:	First law applied to a system undergoing a cyclic pa	rocess and a change of
state, concept of energy, na	ature o	of energy, pure substance, two property rule. First la	w applied to a control
volume, general energy equ	ation,	steady flow energy equation on unit mass and time bas	is,
application of SFEE for dev	vices su	ich as boiler, turbine, heat exchangers, pumps, nozzles,	, etc.
MODULE-3		SECOND LAW OF THERMODYNAMICS	08 Hours
Second Law of Thermod	lynam	ics: Limitations of the first law, definition of a he	at engine, heat pump
refrigerator, thermal efficie	ncy ar	nd the coefficient of performance. Kelvin-Planck and	Clausius statements of
the second law, their equiva	alence,	reversible heat engine, Carnot theorems and corollari	es. PMMI and PMMI
Reversible process, irrevers	sible p	rocess, factors responsible for making a process irre	versible. Carnot cycle
-	-	e. Entropy, Clausius theorem, Clausius inequality, P	-
• •		energy, irreversibility. Third lawof	Ĩ
thermodynamics, absolute e			
MODULE-4		IDEAL GAS MIXTURES	08 Hours
Ideal Gas Mixtures: Gravi	metric	and volumetric analysis, Dalton's law, Amagat's law,	
		of gas mixtures, adiabatic mixing of gases at diffe	
	-	nixing of gases in steady flow.	a chi temperatures and
MODULE-5	-	IDEAL GAS AND REAL GAS	08 Hours
		gas, relation among the specific heats, internal energy	
		entropic, isenthalpic processes, representation of the al	-
*		k, heat, entropy and enthalpy changes during the abov	e processes, problems
		eal gas, law of corresponding states,	
compressibility factor, prob	lems.		1
MODULE-6		PURE SUBSTANCE	08 Hours
PURE SUBSTANCE: Be	havior	of pure substance (steam) with reference to T-v,	P-T, P-V, P-h & T-
	l point	s, properties of steam, Quality of steam, its determinat	ion using throttling an
diagrams, Triple and critical	-	s, properties of steam, Quality of steam, its determinat Steam processes; expressions for the change in inte	
diagrams, Triple and critical separating-throttling calorir	neters.		ernal energy, enthalpy
diagrams, Triple and critica separating-throttling calorir work, heat, entropy in vario	neters. us pro	Steam processes; expressions for the change in inte	ernal energy, enthalp
diagrams, Triple and critica separating-throttling calorir work, heat, entropy in vario MODELLING OF BASIC	neters. us pro C ENE	Steam processes; expressions for the change in interesses, Mollier chart, Carnot cycle, Rankine cycle, mod	ernal energy, enthalpy dified Rankine cycle.
diagrams, Triple and critical separating-throttling calorir work, heat, entropy in vario MODELLING OF BASIC Air standard assumptions, C	neters. us pro C ENE Overvie	Steam processes; expressions for the change in intercesses, Mollier chart, Carnot cycle, Rankine cycle, mod RGY CONVERSION CYCLES:	ernal energy, enthalpy dified Rankine cycle. ciprocating engines –
diagrams, Triple and critical separating-throttling calorir work, heat, entropy in vario MODELLING OF BASIC Air standard assumptions, C	neters. us pro E ENE Overvie ion for	Steam processes; expressions for the change in intercesses, Mollier chart, Carnot cycle, Rankine cycle, mod RGY CONVERSION CYCLES: ew of reciprocating engines, Air standard cycles for recepticiency, Mean effective pressure(MEP) & Carnot et al.	ernal energy, enthalpy dified Rankine cycle. ciprocating engines –
diagrams, Triple and critica separating-throttling calorir work, heat, entropy in vario MODELLING OF BASIC Air standard assumptions, C Otto, Diesel &dual, Derivat	neters. us pro E ENE Overvie ion for	Steam processes; expressions for the change in intercesses, Mollier chart, Carnot cycle, Rankine cycle, mod RGY CONVERSION CYCLES: ew of reciprocating engines, Air standard cycles for recepticiency, Mean effective pressure(MEP) & Carnot et al.	ernal energy, enthalpy dified Rankine cycle. ciprocating engines –

Text Book(s):

- 1. P.K.Nag, Engineering Thermodynamics, TMH, New Delhi, 2013
- **2.** G.J.Vanwylen and R.E.Sonntag, Fundamentals of Classical Thermodynamics, Wiley Eastern, New Delhi, 2008.
- **3.** Yonus A Cengel and Michale A Boles, Thermodynamics: An Engineering Approach, McGraw Hill, 2002.
- **4.** Principles of engineering thermodynamics by morani 8THedition ,SIversion.

Reference Book(s):

- **1.** Thermal engineering by R.K Rajput 6thedition.
- **2.** R. K. Rajput (2010), A text book of Engineering Thermodynamics, Fourth Edition,Laxmi Publications, New Delhi,India.
- **3.** Engineering thermodynamics by RK rajput,5TH edition, Laxmi Publications, New Delhi,India.
- **4.** Engineering thermodynamics, work and heat transfer by Gordon rogers 4TH edition, person education india 2002.

	NARA	AYANA H	ENGINEEF	RING COL	LEGE:GUI	DUR			
		MANUF	ACTURIN	G PROCES	SSES			R2020	
Semester		Hours /	Week	Total	Credits		Max Ma	rks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
III	3	0	0	48	3	40	60	100	
	L		CO	URSE CO	NTENT				
MOI	DULE – 1	(CASTING	PROCES	SES			8 h	
Introduction	n :Importanc	ce and sele	ection of m	anufacturii	ng processes	•			
Casting Processes: Introduction to casting process, process steps; Sand Casting – Sand Molds - Types of Molding Sands and Testing; pattern: types, materials and allowance; Cores: Types of cores, core prints, principles and design of gating system; Solidification of casting: Concept, solidification of pure metal and alloy;									
	ULE -2				CASTING			8h	
Special casti	ng processes	s: Process	Mechanics	, character	istics, paran	neters and a	applications	of Shell	
casting, inve	stment casti	ng, die cas	sting, centri	ifugal casti	ng;				
RISERS – 7	Types, functi	on and de	sign, castin	ig design c	onsideration	s, Design o	of feeding s	ystems i.e.,	
sprue, runner	e		e e	Ũ					
METHODS		ING: Cru		0 1	-		01		
	DULE-3				NG PROCI			8h	
Metal Joini	0				• •				
-			-		•	-	-	ng, resistance	
welding, The	ermit weldin	g and Plas	sma (Air an	nd water) v	velding subr	nerged arc	welding, La	aser welding,	
applications,	advantages	and disad	vantages of	f the above	processes,	other fabric	cation proce	esses.	
Heat affected	d zones in w	elding; Ai	rc Welding	defects: ca	uses and rea	medies.			
MC	DULE-4		GAS WE	LDING				8h	
Gas Weldin	g: – Flame C	Characteria	stics-Equip	ment, flux	es and filler	rods-Ultra	sonic Weldi	ng – Friction	
Welding-Res	sistance Spo	t Welding	-Resistance	e Seam We	elding – Stud	d Welding -	- Percussion	n Welding -	
Brazing:- Fil	ller Metals, I	Methods -	Soldering:	- Techniqu	les, Types of	f Solders an	nd Fluxes ;7	ГIG& MIG	
welding									
CUTTINC	ор метат	S. Ovy	Apotulono	Cas outtin	a watar pla	ma Cuttir	a of formou	s, non-ferrous	
metals solder		•	•		e 1		0	s, non-remous	
gas welding	-	-			-				
	ULE-5						-	8 h	
MOD	ULE-3		SUKFACE		EERING & LLURGY	POWDER	6	8 n	
SURFACE I	ENGINEEI	RING: Su	rface treatr			r character	istics and a	pplications.	
(a) Overlay o				-					
Ceramics: C	-		-						
preparation;							-		
ceramics: Co	-		<i>p</i> arts. 1103	sing, casu	ing, since me	,, Secondar	y processiii	501	
Powder Met	•	•	anufacture	of powder	s stens invo	lved			
	unui 5y · 11	meipie, m	ununucture	or powders	s, steps invo	iveu.			
MOI	DULE-6			ADDITIV	E MANUF	ACTURI	NG	8h	
Introduction	Prototyping	g fundame	entals, Hist	orical deve	elopment, A	dvantages	of AMT, C	Commonly	
used terms,	• -	-			-	-		-	
preparing, B	-		-					-	
to various fie	-	r	<i>G,</i> <u> </u>					1	
						Г	otal hours:	48 hours	

Text Book(s):

1. Rao P.N., "ManufacturingTechnology–VolumeI", 5thedition, McGraw-HillEducation, 2018.

2. KalpakjainSandSchmidS.R., "ManufacturingEngineeringandTechnology", 7th

edition, Pearson,2018

- 3. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 4. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

Reference Book(s):

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Publications
- 2. ProductionTechnologybyR.K.JainandS.C.Gupta,KhannaPublishers,17thedition,2012
- Production Technology, K.L Narayana, I.K. International Pub, 3rdEdition,2013
 4.Manufacturing Process Vol. I, H.S.ShahPearson,2013,
- 4. Principles of Metal Castings, Rosenthal, Tata Mc Graw Hill ,2ndEdition,2001 6.Workshop Technology–B.S.RaghuVamshi–Vol I.

NARAYANA ENGINEERING COLLEGE:GUDUR									
		Fluid Mechanics and Hydraulic Machines R2020							
Semester		Hrs / Week		Total	Credits		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
III	3	0	0	48	3	40	60	100	

	COURSE CONTENT	
MODULE – 1	PROPERTIES OF FLUIDS	8 Hrs
properties of fluids-density. pressure and their influence and Non Newtonian fluids. Fluid Statics -Atmospheric,	ncept of continuum Dimer specific weight, specific gravi on fluid motion–Newton's L Gauge and Vacuum pressure simple, U-tube manome	ty, surface tension- vapo _aw Of Viscosity, Newtonia
MODULE -2	FLUID KINEMATICS & DYNAMICS	8 Hrs
classification of flows-stead rotational and irrotational fl FLUID DYNAMICS: surface	am line, path line and str y & unsteady, uniform, non- ows-equation of continuity fo and body forces – Euler's a	uniform, laminar, turbulent or one dimensional flow. nd Bernoulli's equations fo
flowing stream line, momer MODULE-3	tum equation and its applica	ation on force on pipe bend 8 Hrs
total energy line-hydraulic of Measurement of flow: Pi position only. DIMENSIONAL ANALYS	nor losses in pipes-pipes in s gradient line. totTube, Venturi Meter and SIS - dimensional homogenei yleigh's method-Buckingham	d Orifice Meter- horizonta ty- methods of
		10 Hrs
IMPACTOFJETS: Introduction	ontoHydrodynamicThrustofje flat vanes and series of ra	tonfixedandmovingsurfaces
MODULE-5	HYDRAULIC TURBINES	8 Hrs
wheel, Francis turbine and K	ssification of turbines, Impulse aplan turbine-working proport eory- functions and efficiency	ions, work done, efficiencies
MODULE-6	HYDRAULIC PUMPS	6 Hrs
Classification- work done – m	roduction, components parts and anometric head-loss efficiencion ce characteristic curves and NP	es-specific speed-pumps in

Total Hrs: **48 Hrs**

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard bookhouse 2. A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., NewDelhi,2010.

3.Dr D S Kumar, "Fluid Mechanics and Fluid Power Engineering" S K Katariua&Sons,2014.

Reference Book(s):

1. Fluid mechanics and fluid machines by Rajput, S.Chand &Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, UniversitiesPress.

NARAYANA ENGINEERING COLLEGE:GUDUR								
	Computer Aided Drafting and Modelling Lab R2020							
Semester		Hours / Week		Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	0	0	3	48	1.5	40	60	100

COURSE CONTENT	
Task -1 (6 hrs)	
Study capabilities of software for Drafting and Modeling – Coordinate systems (absolute,	
elative, polar, etc.) – Creation of simple figures like polygon	
nd general multi-line figures.	
Task -2 (4 hrs)	
Draw Title Block with necessary text and projection symbol.	
Task -3 (4 hrs)	
Draw curves like parabola, spiral, involutes.	
TASK-4 (4 hrs)	
Draw front view and top view of simple solids like prism, pyramid, cylinder, cone, etc, and	
limensioning.	
TASK-5 (6 hrs)	
Draw front view, top view and side view of objects from the given pictorial views (eg. V-	
block, Base of a mixie, Simple stool, Objects with hole and	
purves).	
TASK-6 (6 hrs)	
Draw a simple steel truss.	
TASK-7 (4 hrs)	
Draw sectional views of prism, pyramid, cylinder, cone, etc,	
TASK-8 (6 hrs)	
Draw isometric projection of simple objects.	
TASK-9 (4 hrs)	
Creation of 3-D models of simple objects and obtaining 2-D multi-view drawings from 3-	
D model.	

1. Ibrahim Zeid, "CAD / CAM - Theory and Practice 2E", Tata Mcgraw-Hill, NewDelhi, 2010.

P. Radhakrishnan, S. Subramanyan, V. Raju "CAD/CAM/CIM", New Age International,2015.
 M.M.M. Sarcar, K. Mallikarjuna Rao, K. Lalit Narayan "computer aided design and

manufacturing", prentice hall of India,2008.

Reference Book(s):

1. Mikell.P.Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", Prentice hallof India Pvt. Ltd.,NewDelhi.2008

2. Chriss McMahon and Jimmie Browne, "CAD/CAM", Addision Wesley, New York, 2000.

3. Tien-chienchang, Richard A wysk, Hsu-pin wang, "Computer-Aided Manufacturing", Pearson Edition, 2009.

NARAYANA ENGINEERING COLLEGE::GUDUR									
		Manufacturing process Lab R2020							
Semester	Hours / Week		Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
III	0	0	3	48	1.5	40	60	100	

COURSE CONTENT
Task 1 - [3 hrs]
Pattern Design and making on lathe machine
Task 2 - [3hrs]
Sand Properties Testing – Exercise for Strength and Permeability
Task -3 [3 hrs]
Gating Design and pouring time and solidification time calculations
TASK -4 [3 hrs]
Molding, Melting and Casting for ferrous/ non ferrous materials
TASK -5 [3 hrs]
Gas welding: - butt welding and lap welding of 5 mm M.S. plates
TASK-6 Brazing[3 hrs]
Brazing on copper pipes- 6mm pipe
TASK -7 [3 hrs]
Spot Welding on M.S PLATE- 2mm size
TASK -8 [3 hrs]
Arc Welding: Lap & Butt Joint of M.S. plates -5mm
TASK -9 [6 hrs]
Hydraulic Press: Deep drawing Press Tool: Blanking and Piercing operation with Simple dies
TASK -10 [3 hrs]
Additive manufacturing-3D printing
Text Book(s): 1.W. A. J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers.
2 Acharkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication.
3 HMT, Production Technology, Tata McGraw Hill.
Reference Book(s): 1 .HajraChoudary, Elements of workshop technology, Vol I & II, MediaPublishers,

2 .Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press,2008

3 .PoulDeGarmo, J.T.Black, R.A.Kosher, MaterialsandProcesses inManufacturing, PrenticeHallof India Pvt.Ltd.,1997.

NARAYANA ENGINEERING COLLEGE:GUDUR

		Fluid Mechanics and Hydraulic Machines Lab							
Semester	Hours / Week		Total	Credits	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
III	0	0	3	48	1.5	40	60	100	

COURSE CONTENT

Task 1 - Calibration of Venturi Meter (3 hrs)

calibrate the coefficient of Discharge of a Venturi Meter.

Task -2 Calibration of Orifice Meter (3 hrs)

calibrate the coefficient of Discharge of an Orifice Meter.

Task -3 Small Orifice (3 hrs)

calibrate the coefficient of Discharge of small Orifice.

TASK-4 External Mouth Piece(3 hrs)

calibrate the coefficient of Discharge of external mouth piece.

TASK-5 Rectangular Notch (3hrs)

calibrate the coefficient of Discharge of Rectangular Notch.

TASK-6 Triangular Notch (3 hrs)

calibrate the coefficient of Discharge of Triangular Notch.

TASK-7 Minor Losses (3 hrs)

find the loss of head due to sudden contraction.

TASK-8 Major Losses (3 hrs)

find the friction factor of pipes having different diameters and same material.

TASK-9 Verification of Bernoulli's Theorem. (4 hrs)

prove that the total energy remains constant by using Bernoulli's tube with different cross section.

TASK -10 Impact of jet on vanes (4 hrs)

measure the co efficient of impact of jet on flat and curved vanes.

TASK-11 Pelton wheel turbine (4 hrs)

conduct performance test on Pelton Wheel and find it's efficiency.

TASK-12 Single stage centrifugal pump. (4 hrs) (4 hrs)

calculate the efficiency of a single stage centrifugal pump with constant speed.

TASK-13 Multi stage centrifugal pump. (4 hrs)

calculate the efficiency of a Multi stage centrifugal pump with constant speed.

TASK-14 Reciprocating pump. (4 hrs)

calculate the efficiency of a Reciprocating pump with constant speed.

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house 2. A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., NewDelhi.

Reference Book(s):

1. Fluid mechanics and fluid machines by Rajput, S.Chand&Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, CengagePublishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, UniversitiesPress.

NARAYANA ENGINEERING COLLEGE:GUDUR								
		THERMAL ENGINEERING R2020						
Semester	Hours / Week			Total	Credits	Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100

	COURSE CONTENT		
MODULE – 1	INTRODUCTION TO IC ENGINES	08 H	ours
IC ENGINES: Classificatio	on, Working principles, Valve and Port Timir	ng Diagrams	. Actual Cycles and
their Analysis: Introductio	n, Comparison of Air Standard and Actual C	ycles, Time	Loss Factor, Heat
Loss Factor, Exhaust Blow d	own Loss due to Gas exchange process, Volu	umetric Effic	ciency. Loss due to
Rubbing Friction.			
MODULE -2	COMBUSTION IN IC ENGINE		08 Hours
COMBUSTION IN IC	ENGINES: Combustion in SI Engines Norm	al Combust	ion and abnormal
	flame speed and effect of engine variables, 7	• •	
pre-ignition and knocking	g (explanation of) Fuel requirements and fuel	l rating, anti	knock additives,
	quirements, types. Combustion in C.I. Engine	•	
	ance, Effect of engine variables, Diesel Knoc		·
	stion chambers and nozzles used – fuel requi		l fuel rating.
MODULE-3	TESTING AND PERFORMANCE (DF IC	08 Hours
	ENGINES		
	RMANCE OF IC ENGINES: Parameters of	•	
• •	umption, air intake, exhaust gas composition	-	ver, Determination of
frictional losses and indicate	ed power, Performance test, Heat balance she	et.	
MODULE-4	COMPRESSORS		00 11
			08 Hours
	APRESSORS : Classification of compress		• •
	work required, Isothermal efficiency volu		
U 1	ression, under cooling, saving of work, min	umum work	condition for multi
stage compression.		C .	• • • •
	RESSORS : Mechanical details, principle	•	•
adiabatic coefficient, velocit	blade shape-losses, slip factor, power input f	factor, press	ure coefficient and
autabatic coefficient, velocit	y diagrams, power required.		

MODULE-5REFRIGERATION SYSTEM08 HoursRefrigeration System Components: Compressors, expansion devices, condensers, evaporators.Vapour Absorption Refrigeration: Water vapour refrigeration systems, steam jet refrigeration; vapour
absorption refrigeration systems, single effect and double effect vapour absorption systems.

MODULE-6	Air Conditioning	08 Hours				
Air Conditioning: Psychometric properties of air, psychometric processes, comfort charts, air conditioning load calculations, types of air conditioning systems. Demonstration of HVAC software related to psychometric processes & HVAC systems.						
	Total hours:	48 Hours				

- 1. V. Ganesan (2011), I.C. Engines, 3rd edition, Tata McGraw-Hill, New Delhi, India.
- 2. B.JohnHeywood(2011), internalcombustionenginefundamentals,2ndedition, TataMcGraw-Hill, NewDelhi.
- 3. Refrigeration and Air Conditioning, by Arora, McGraw-Hill education, 3rd edition, 2008.
- 4..Refrigeration and Air Conditioning, by RS khurmi,JK GUPTHA,SCHAND Publications, Revised Edition 2015.

Reference Book(s):

1. Mathur, Sharma (2008), IC Engines, 3rd edition, Dhanpat Rai & Sons, New Delhi, India.

2. R. K. Rajput (2011), Thermal Engineering, 18th edition, Lakshmi Publications, NewDelhi, India.

3. Pulkrabek (2008), Engineering fundamentals of IC Engines, 2nd edition, Pearson Education.

NARAYANA ENGINEERING COLLEGE:GUDUR									
		KINEMATICS OF MACHINERY R2020							
Semester	Hours / Week			Total	Credit		Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
IV	3	0	0	48	3	40	60	100	

COURSE CONTENT

MODULE – 1	Introduction	8 Hours

Definitions of link or element, kinematic pairs, degrees of freedom, Grubler's criterion (without derivation), kinematic chain, mechanism, structure, mobility of mechanism, inversion, machine, kinematic chains and inversions. Inversions of four bar chain, single slider crank chain and double slider crank chain.

MODULE -2 Mechanisms with Lower Pairs 08 Hours	MODULE -2	Mechanisms with Lower Pairs	08 Hours
--	-----------	-----------------------------	----------

Quick return motion mechanisms – drag link mechanism, straight line motion mechanisms – Peaucellier's mechanism and Robert's mechanism, intermittent motion mechanisms – Geneva mechanism and ratchet and pawl mechanism, pantograph.

Steering Mechanism: Condition for perfect steering, Steering gear mechanisms, Davis and Ackermann-Hooke's Joint.

MODULE-3	Velocity and Acceleration of	09 Hours
	Mechanisms	

Determination of velocity and acceleration of a point/link in simple mechanisms by relative velocity method (graphical) – Coriolis component of acceleration. Instantaneous centre – Centrodes – Kennedy's theorem – To determine linear velocity and angular velocity of links of simple mechanisms by instantaneous center method.

Klein's Construction for velocity and acceleration of slider crank mechanism.

MODULE-4	Toothed Gearing	08 Hours

Classification of toothed wheels – Gear terminology –Law of gearing –Velocity of sliding – Length of path of contact, Arc of contact – Contact ratio – Interference in involute gears, Methods of avoiding interference – Minimum number of teeth to avoid interference on pinion meshing with gear and on pinion meshing with rack. Characteristics of involutes action, Comparison of involute and cycloidal teeth profiles. Numerical problems.

MODULE-5	Gear Trains	07 Hours

Velocity ratio & Train value, Types of gear trains– Simple, Compound, Reverted & Epicyclic gear trains. Algebraic/Tabular method of finding Train value of Epicyclic gear trains, Bevel gear Differential of an automobile.

MODULE-6	Cams	8 Hours

Types of cams, types of followers, displacement, velocity and acceleration time curves for cam profiles, disc cam with reciprocating follower having knife-edge, roller and flat faced follower, disc cam with oscillating roller follower. Follower motions including, SHM, uniform velocity, uniform acceleration and retardation and cycloidal motion.

- 1. Thomas Bevan, Theory of Machines, CBS Publishers, 2009.
- 2. S.S. Rattan, Theory of Machines, Tata McGraw Hill Publishers, 3rd Edition, 2009.
- 3. Kinematics & Theory of Machines, Sadhu Singh, Pearson

Reference Book(s):

1.J.E.Shigley, Theory of Machines, Tata Mc.Graw Hill Publishers, New Delhi, 3rd Edition, 2005. 2.C.S. Sharma and Kamlesh Purohit, Theory of Mechanisms and Machines, PHI Learning Pvt. Limited, 2006

3. Amitabh Ghosh and A.K. Mallik, Theory of Machines, East West Publications, 3rd Edition, 2009.

NARAYANA ENGINEERING COLLEGE:GUDUR								
		Mechanics of Materials R2020						
Semester		Hours /	Max	Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	2	1	0	48	3	40	60	100

	COURSE CONTENT		
MODULE – 1	SIMPLE STRESSES AND STRAINS	08	hours
of safety, Lateral stra	ains, Hooke's law, Stress–Strain diagram for various materials, in, Poisson's ratio, Volumetric strain, relation between three posite bars, Temperature stresses, Strainenergy.		
MODULE -2	SHEAR FORCE AND BENDING MOMENT		08 hours
hanging beams subj	the and bending moment, S.F and B.M. diagrams for cantilever, ected to Point loads, Uniformly distributed loads, Uniform oads, Point of contra flexure.	. .	· ·
MODULE-3	BENDING STRESS AND SHEAR STRESS		10 hours
modulus	nding, Bending equation, Determination of flexural stresses for Shear stress distribution across various beams & sections - Real ns	•	
MODULE-4	TORSIONAL SHEAR AND DEFLECTION OF BEA	MS	10 hours
of strengths of solid an Relationship between	n, Torsion Equation, transmission of power in solid and hollow of d hollow shafts, shafts in series and parallel, combined bending curvature, slope and deflection, Slope and deflection of cantilevent	and torsi	on.
MODULE-5	gration method and Macaulay'smethod. PRESSURE VESSELS		06 hours
•	ical shells, Derivation of formula for longitudinal and circumfer n spherical shells, Thick cylinders under internal and external p		esses,
MODULE-6	PRINCIPLE STRESSES & STRAINS		06 hours
_	Stresses on an inclined plane under different uniaxial and bia rincipal stresses - Mohr's circle	ixial stres	s conditions -

1. F.P. Beer, E.R. Johnston, Jr&John.T. DeWolf, "Mechanics of Materials", 7th edition, Tata McGraw-Hill,2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, Jaan Kiusallaas & M.M.M.Sarcar (Second Edition), Cengage Learning Publishers.

Reference Book(s):

1. Timoshenko, "Strength of Materials Part-I&II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, *Strength of materials*, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria&Sons, 2ndEdition,2011.

					G COLLEC			
			Metal I	Forming Pr	ocesses			R2020
Semester		Hours /	Week	Total	Credits		Max Ma	arks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100
			COL	URSE CON	NTENT			
MODU	LE – 1	IN	FRODUC	ΓΙΟΝ ΤΟ	METAL	FORMIN	G	8h
engineering	stress and of plasticity	true stress, , Hot work	relation be ing, cold w	tween eng orking, stra	ineering stra ain hardenir	ain and tru	e strain ,yi	ation between eld criteria, yie lisation and grai
MODUI	LE -2	RO	LLING &	FORGIN	G			8h
Introduction to	bulk and	sheet metal	forming, E	conomics of	of bulk form	ning		
forging, Drop		-		-	-	-		Forging – Smit
forging of stri	p, disc and	power requ			• •		U U	
MODUI EXTRUSION extrusion - Fo	E-3 PROCESS rward extru	SES: Basic usion and b	irements, a EXT extrusion 1 ackward ex	pplications RUSION process and trusion – 1	s, Equipmen PROCES d its charac Impact extru	t and their SES teristics. N ision Hydro	selection Iechanics	8h of hot and cold rusion, forces in
MODUI EXTRUSION extrusion - Fo extrusion of c	E-3 PROCESS rward extru ylindrical a	SES: Basic usion and b	irements, a EXT extrusion j ackward ex ndrical com	pplications RUSION process and trusion – 1 aponents –	s, Equipmen PROCES d its charace Impact extru- characterist	t and their SES teristics. Musion Hydro ics and def	selection Iechanics	8h of hot and cold rusion, forces in ruded parts.
MODUI EXTRUSION extrusion - Fo extrusion of cy MODU	E-3 PROCESS rward extru ylindrical a	SES: Basic usion and b nd non cylin	irements, a EXT extrusion p ackward ex ndrical com SHI	pplications RUSION process and trusion – 1 ponents – EET MET	s, Equipmen PROCES d its charac Impact extru characterist AL WORK	t and their SES teristics. N ision Hydro ics and def	selection Iechanics ostatic extr ects in extr	8h of hot and cold rusion, forces in ruded parts. 8h
MODUI EXTRUSION extrusion - Fo extrusion of c MODUI Sheet Metal V Blanking and	JE-3 PROCESS rward extru- ylindrical a LE-4 Vorking – 1 piercing – and cold s s – Equipm	SES: Basic usion and b nd non cylin Economical Bending an spinning. Fo	irements, a EXT extrusion p ackward ex ndrical com SHI Considera d forming orce and por and their c	pplications RUSION process and trusion – 1 ponents – EET MET tions - Star – Drawing wer requir	s, Equipmen PROCES d its charace Impact extru- characteriste AL WORK mping, form and its type rement in slics	t and their SES teristics. N usion Hydro ics and def CING hing and othes – Cup du	Selection Iechanics ostatic extr ects in extr her cold we rawing and	8h of hot and cold rusion, forces in ruded parts.
MODUI EXTRUSION extrusion - Fo extrusion of c MODU Sheet Metal V Blanking and coining – Hot netal products MODUL	JE-3 PROCESS rward extru- ylindrical a LE-4 Vorking – 1 piercing – and cold s s – Equipm E-5	SES: Basic usion and b nd non cylin Economical Bending an pinning. Fo ent, tooling	irements, a EXT extrusion p ackward ex ndrical com SHI Considera d forming orce and po and their c	pplications RUSION process and trusion – 1 ponents – EET MET tions - Star – Drawing ower requir haracterist IRE DRA	s, Equipmen PROCES d its charace Impact extru- characteriste AL WORK mping, form and its type rement in shi ics WING	t and their SES teristics. M usion Hydro ics and def CING ning and othes – Cup de neet metal	selection fechanics ostatic extr ects in extr her cold we rawing and operations	8h of hot and cold rusion, forces in ruded parts. 8h orking processes 1 Tube drawing - , defects in shee 8h
MODUI EXTRUSION extrusion - Fo extrusion of c MODU Sheet Metal V Blanking and coining – Hot netal products	IE-3 PROCESS rward extru- ylindrical a LE-4 Vorking – 1 piercing – and cold s s – Equipm E-5 ;: Process M	SES: Basic usion and b nd non cylin Economical Bending an pinning. Fo ent, tooling	irements, a EXT extrusion p ackward ex ndrical com SHI Considera d forming orce and por and their c W	pplications RUSION process and trusion – 1 ponents – EET MET tions - Star – Drawing wer requin haracteristics,	s, Equipmen PROCES d its charace Impact extru- characteriste AL WORF mping, form and its type rement in shi ics WING determinat	t and their SES teristics. N usion Hydro ics and def CING hing and othes – Cup do neet metal	selection lechanics ostatic extr ects in extr her cold we rawing and operations, ee of draw	8h of hot and cold rusion, forces in ruded parts. 8h orking processes 1 Tube drawing - , defects in shee 8h
MODUI EXTRUSION extrusion - Fo extrusion of cy MODUI Sheet Metal V Blanking and coining – Hot netal products MODUL Wire Drawing Force, power, F	IE-3 PROCESS rward extru- ylindrical a LE-4 Vorking – 1 piercing – and cold s s – Equipm E-5 ;: Process M	SES: Basic usion and b nd non cylin Economical Bending an pinning. Fo ent, tooling	irements, a EXT extrusion p ackward ex ndrical com SHI Considera d forming orce and por and their c W und its char defects in p	pplications RUSION process and trusion – 1 ponents – EET MET tions - Star – Drawing ower requir haracterist IRE DRA acteristics, roducts, No	s, Equipmen PROCES d its charace Impact extru- characteriste AL WORF mping, form and its type rement in shi ics WING determinat	t and their SES teristics. M usion Hydro ics and def CING ning and othes – Cup dr neet metal	selection lechanics ostatic extr ects in extr her cold we rawing and operations, ee of draw	8h of hot and cold rusion, forces in ruded parts. 8h orking processes 1 Tube drawing - , defects in shee 8h
MODUI EXTRUSION extrusion - Fo extrusion of c MODUI Sheet Metal V Blanking and coining – Hot netal products MODUL Wire Drawing Force, power, F	JE-3 PROCESS rward extru- ylindrical a LE-4 Vorking – 1 piercing – and cold s s – Equipm E-5 g: Process N and number ULE-6 plastics, inj	SES: Basic usion and b nd non cylin Economical Bending an pinning. Fo ent, tooling Mechanics a r of stages-o	irements, a EXT extrusion p ackward ex ndrical com SHI Considera d forming conce and por and their c W and its char defects in p PR blow moule	pplications RUSION process and trusion – 1 ponents – EET MET tions - Star – Drawing ower requir haracterist IRE DRA acteristics, roducts, Na CCESSIF ding, calen	s, Equipmen PROCES d its charace Impact extru- characteriste AL WORH mping, form and its type rement in slics WING determinate umerical pro- NG OF PL	t and their SES teristics. M usion Hydro ics and def MING ning and othes – Cup do neet metal ion of degroblems on of STICS	selection lechanics ostatic extr ects in extr her cold we rawing and operations, ee of draw drawing	8h of hot and cold rusion, forces in ruded parts. 8h orking processes 1 Tube drawing - , defects in shee 8h ing, drawing

1. Manufacturing Technology, Schmid and kalpak Jain, Pearson Education, 2016

2. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012

3. Manufacturing technology Vol II by P.N. Rao, Tata McGraw Hill, 4th edition, 2013

Reference Book(s):

1. Manufacturing Technology, R.K. Rajput, LaxmiPub

2. Rapid Prototyping Principles and Applications, Rafiq Noorani, WielyPub

NARAYANA ENGINEERING COLLEGE:GUDUR								
		IC ENGINES LAB						
Semester		Hours / Week Total Credits Max M						·ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	0	0	3	48	1.5	40	60	100

COUDCE CONTENT

COURSE CONTENT
Task 1[6 Hrs]
Performance test on Spark Ignition engine and Compression Ignition using the alternate
fuels.

Task-2 [3Hrs]

Valve Timing Diagram of an 4 stroke diesel engine .2hrs

Task-3[3 Hrs]

Port Timing Diagram of an 2-Stroke Petrol engine. 2hrs TASK-4[3 Hrs]

Performance Test on a 4 -Stroke Diesel Engines. 2hrs TASK-5[3 Hrs]

Performance Test on 2-Stroke Petrol engine. 2hrs

TASK-6[3 Hrs]

Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinder

Engine. 3hrs **TASK-7[3 Hrs]** Retardation and motoring test on 4- stroke engine. 2hrs

TASK-8[3 Hrs]

Heat Balance of an I.C. Engine. 2hrs

TASK-9[3 Hrs]

Fuel Ratio and Volumetric Efficiency of an I.C. Engines.

TASK-10[3 Hrs]

Performance Test on Variable Compression Ratio Engines for CI Engines. TASK -11[6 Hrs]

Performance Test on Reciprocating Air – CompressorUnit.

Study of Boilers.

TASK -12[3 Hrs]

TASK-13[6 Hrs]

Engine Emission Measurement for SI & CI Engines.

Additional Experiments:	
TASK-14. Dismantling / Assembly of Engines to identify the parts and their position in an engin	e. CO1

1. Vasandani V.P. and Kumar, D.S., Treatise on HeatEngineering, Chand&Co Publishers, New Delhi,2011.

2.Ganesan, V., Gas Turbines 3rd Edition, Tata McGraw Hill Book Company, New Delhi, 2010.

3. Internal Combustion Engines / V. Ganesan- TMH, 4thEdition,2012

4. Thermal Engineering / Rajput / Lakshmi Publications, 9thEdition,2013

Reference Book(s):

1.I.C. Engines fundamentals, Heywood, McGrawHIII, 1st Edition, 2011

2. IC Engines – Mathur& Sharma – DhanpathRai& Sons,,2010

3. Engineering fundamentals of IC Engines – Pulkrabek, Pearson, PHI, 2ndEdition, 2009

4. Thermal Engineering, Rudramoorthy – TMH, 10thEdition,2010

]	Mechanics	of Materi	als Lab			R2020
Semester		Hours /		Total	Credit		Max Mar	
	L	Т	Р	hrs	C	CIE	SEE	TOTA
IV	0	0	3	48	1.5	40	60	100
			COU	RSE CON	TENT		<u> </u>	
	Г	ask 1 Tensi	ion on U.T	.M.[4hrs]				
Study the stress on U.T.M	s – strain	relations of	(a) Mild St	eel b) Cast	iron and (c)) Tor Steel	be conduction	ng tension te
	Τ	Task 2 Com	pression te	est on U.T.	M[4hrs]			
Study the stress			(a) Mild St	eel b) Cast	iron and (c)) Tor Steel	be conduction	ng
compression te				nd Choon	trongth [1]	hual		
Find the compr		ask -3 Con	-		8 -	-	w conductir	a relevent
tests.		u shear such	igtii or woo	and shea	i suengui o		by conductin	ig relevant
	I	TASK -4 Bri	innell's an	d Vicker's	hardness.[6hrs]		
Find the Brinne	ell's and V	Vicker's har	iness num	pers of (a) S	Steel (b) Br	ass (c) Alu	minium	
(d) Copper.	ii 5 uiiu	, ionor 5 mar		(u) (u)				
	Г	CASK -5 Mo	dulus of r	igidity.[6h	rs]			
Determine the l	Modulus	of rigidity (a) Solid sha	ft (b) Hollo	ow shaft ma	de of steel	and	
aluminium.								
TACK (Come		and Tangila	40.949 [4].wa	.1				
TASK-6 Comp Find the spring			_	-	ial of a apri	ng hy cond	uating	
compression ar			i figiaity o		iai or a spri	ing by cond	ucting	
••••••		TASK -7 De	eflection te	st.[4hrs]				
Determine the `	Young's 1	modulus of t	he material	l by conduc	ting deflect	tion test on	a simply	
supported, and	-			•	C			
	Т	TASK -8 De	eflection te	st.[4hrs]				
Determine the Cantilever beam		modulus of t	he materia	l by conduc	ting deflect	tion test on	propped	
TASK -9 Impa	ict streng	gth .[4hrs]						
Find impact str	ength of a	a given mate	rial by con	ducting a C	Charpy test			
	Τ	TASK -10 Ir	npact stre	ngth.[4hrs]]			
				ducting a I				

Additional Experiments:	
TASK -11 Deflection.[4hrs]	
Determine the deflection in leaf spring with a single leaf and multiple leafs.	C05

1. F.P.Beer, E.R.Johnston, Jr&John.T.DeWolf, "Mechanics of Materials", 7thedition, TataMcGraw-Hill, 2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, JaanKiusallaas&M.M.M.Sarcar (SecondEdition), Cengage LearningPublishers.

Reference Book(s):

1. Timoshenko, "Strength of Materials Part-I& II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria& Sons, 2ndEdition,2011.

NARAYANA ENGINEERING COLLEGE:GUDUR								
		Computer Aided Machine Drawing Lab R2020						
Semester	Hours / Week			Total	Credit	Max	Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	0	0 0 3 48 1.5 40 60						100

COURSE CONTENT

PART-A(Manually)

Task 1 Conventional representation [4hrs]

- 1. Conventional representation of materials.
- 2. Conventional representation of machinecomponents.

Task 2 Conventional representation[4hrs]

- 1. Conventional representation of dimensioning on the drawings.
- 2. Conventional representation sectional views.

Task -3 Foundation bolts [4hrs]

- 1. Bolted joints-Hexagonal bolt and nut, Square bolt andnut.
- 2. Foundation bolts- Eye, Bent, Rag foundationbolts.

TASK -4 KEYS [4hrs]

- 1. Keys-Saddle key, Sunk key, Woodruff key, Kennedykey.
- 2. Locking arrangements for nuts-Locking by split pin, castle nut.

TASK -5 Assembled views [4hrs]

Drawing of assembled views for the part drawings of the following, using conventions and easy drawing proportions.

1. Stuffing box

2.Screw jack

TASK-6 Assembled views [4hrs]

Preparation of part drawing representing limits, fits and tolerances and surface finish indications.1. Petrol Engine connecting rod2.Single tool post

PART-B

The following contents are to be done by any 2D software package Conventional representation of materials and components ::

TASK -7Riveted joints- & Keys[6hrs]

Drawing of rivet, lap joint, butt joint with single strap, single riveted, double Riveted joints. Taper key, sunk taper key, round key, saddle key, feather key, woodruff key.

TASK -8 Detachable joints & Welded joints[6hrs]

Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts., Lap joint and T joint with fillet, butt joint with conventions.

PART-C

The following contents to be done by any 3D software package:

TASK -9 Assembly drawings [6hrs]

Lathe tool post, tool head of shaping machine, tail stock, machine vice, gate valve, carburettor,

Piston

TASK -10 Assembly drawings [6hrs]

screw jack, plumber block, axle bearing, pipe vice, clamping device, Geneva cam, universal coupling, connecting rod, eccentric.

Additional Experiments:

TASK -11 Manufacturing drawing

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

Text Book(s):

1.K.L. Narayana, P. Kannaiah, "A text book on Engineering Drawing", SciTech Publications, 20142. N.D.Bhatt, "Machine Drawing", Charotar, 50th edition, 2014.

3"Software tools/packages", Auto CAD, Solid works or equalent.

4. Machine Drawing With AutoCAD, GoutamPohit, GoutamGhosh, Pearson Publications

Reference Book(s):

1. CecilJensen, JayHelselandDonaldD.Voisinet, "ComputerAidedEngineeringDrawing",Tata McGraw-Hill, NY,2000.

2. James Barclay, Brain Griffiths, "Engineering Drawing for Manufacture", Kogan PageScience, 2003.

3. K.L. Narayana, "Production Drawing", NewAge International Publishers, 3rdedition,2014

4.P I Varghese and K C John, Machine Drawing, VIP Publishers, 2011

NARAYANA ENGINEERING COLLEGE :: GUDUR -

OPEN ELECTIVES

		NARAY	ANA ENG	GINEERING	COLLEGE:G	UDUR		
				ERING OPTI		r		R2020
Semester		Hours / Wee		Total hrs	Credit		ax Mark	
OE	L 3	T 0	P 0	48	<u>C</u> 3	CIE 40	SEE	TOTAL
OE	5	0	-	40 URSE CONT		40	60	100
MODUI	MODULE - 1LINEAR PROGRAMMING PROBLEM8h							
OR definition- Classification of Models -Types of Operations Research models, Linear Programming								
Problem F	ormulation	, Graphical	Method, S	Simplex Metho	od, Two– Phas	se Simplex M	lethod,	Big-M
Method, Pr	Method, Problem of Degeneracy, conversion to primal to dual and dual simplex method							
MODU	LE -2		TRAN	ISPORTATIO	ON PROBLEM	1		8h
Transporta	tion Probl	em – Forn	nulation: Г	Different Meth	ods of Obtair	ning Initial F	Basic Fe	easible
-					ogel's Approxi	÷		
					rate Problem;		-	•
U		1		e e		Assignmen	1 11001	
Formulation; Optimal Solution -Traveling Salesman problem.								
Sequencing	g -Assump	otions-n-jobs	-2 Machir	nes model, n-	jobs-3-machine	es models &	n jobs	— m
Machines models								
MODU	LE-3			PERT &	CPM:			8h
Introductio	on to Proie	ct Managem	nent. Activ	ities. Events.	Predecessor Re	lationships. A	AOA Dia	agram.
	c c	Ū.			arliest Occurrer	•		•
•	•				Deterministic N			
			-		- Probabilistic			-
e			U		ance of the A		•	•
•				scheduled time				-,
	r - r		,					
MODU	LE-4	DYNAMI	C PROGR	AMMING &	REPLACEMI	ENT MODEI	LS	8h
-	-	-		-	e of Optimality		•	
Programm	ing- Capita	l Budgeting	Problem –	Shortest Path	Problem – Solu	tion of Linear	Program	nming
Problem by	y DP, cargo	o-loading pro	oblem, emp	loyment Smoo	thing			
Replacem	ent Models	: Introductio	on – Types o	of Replacemen	Problem, Dete	rmination of	Econom	ic Life
-				-	ch completely			
	-	ement Mode			1		I	
,	1 1 1 200							
MODU	ILE-5		ОРТІ	ΜΙΖΑΤΙΟΝ Ί	TECHNIQUES			8h
MODU	J		UII		LECHNIQUES	,		011

Introduction to Optimization: Engineering application of Optimization – Statement of an Optimization problem - Optimal Problem formulation - Classification of Optimization problem.

Optimum design concepts: Definition of Global and Local optima, Optimality criteria Optimization algorithms for solving unconstrained optimization problems – Gradient based method: Cauchy's steepest descent method, Newton's method, Conjugate gradient method.

MODULE-6	HEURISTIC METHODS	8h

Heuristic Programming – Greedy Heuristic, Meta Heuristic – Tabu Search Algorithm, Simulated Annealing Algorithm, Genetic Algorithm, Application of Metaheuristics to Integer Linear Programs, Constraint Programming.

Total hours: 48 hours

Text Book(s):

- 1. 1. Operation Research, J.K.Sharma, MacMilan, 5th edition, 2013.
- 2. Engineering application of Optimization, AVICHANDRAN, k.M.RAGSDELL, G.V.REKLAITIS
- 3. Engineering of Optimization BY SS RAO

Reference Book(s):

- 1. 1. Operations Research by R Panneerselvam, PHI, 2nd edition, 2012.
- 2. Operations Research, Wagner, PHI Publications, 2nd edition.
- 3. Prem Kumar Gupta "Introduction to Operations Research" S.Chand, 2012
- 4. Operations Research S.D Sharma 5nd edition, 2012

		NAK				COLLEG	E:GUD		
~				CHATRO	1	1		R2020	
Semes		irs / Weel		Total	Credit	OT		Max Marks	
ter	L 3	T	P	hrs 48	C 3	CIE	SEE	TOTAL	
OE	3	0	0	_	_	40	60	100	
				COU	RSE CON	ITENT			
	MODUL	E – 1			ODUCTI CHATRO			7 Hours	
manufact	turing, Sta	tic and I	Dynamic	characte	ristics of		ent sys	penefits of mecha tem. Open and Cl	
	MODUL	. Е -2			SENSOR	S		10 Hours	
Force/Pre	essure Mea	surement	: Strain	Gauged	Element, I	Pressure sw	itch, Lo	LVDT, Capacitivo Dad Cell, Piezoelect pneumatic sensor, I	tric sense
	MODUI	E 2		тр	ANSDUC	TDC		09 Hours	
diode, ph		tor, photo						ouples, Light Sensonsor: Solenoids, Re	
	MODUI	LE-4		DATA	ACQUIS SYSTEM			07 Hours	
hold cir	cuit, Sam	pling fr		- •				neorem, Aliasing, S	ample a
Approxii	nation), Ct	irrent and	Voltage			ed DACs,	DAC	(R2R), ADC (
	MODUI	LE-5	F	e Amplifie FUNDAM	er. IENTALS ROBOTIO	OF PLC a	&	08 Hours	Successi
Introduct Timers, (MODUI	LE-5 tecture, 1 ractical E nponents	Ladder Examples	e Amplifie FUNDAM Logic pro s of Ladd onfigurati	er. ENTALS ROBOTIC ogramming er Progran	OF PLC of CS g for differ mming, Int ulators.	& cent typ		Successi
Introduct Fimers, d definition	MODUI ion, Archi Counter, P n, robot con MODUI	LE-5 tecture, 1 ractical E nponents LE-6	Ladder Examples , robot c	e Amplifie FUNDAM Logic pro s of Ladd onfigurati PNE HYDR	er. ENTALS ROBOTIC ogramming er Program on, manip CUMATIC AULIC S	OF PLC a CS g for differ nming, Int ulators.	Sent typ rent typ roductio	08 Hours bes of logic gates, on of SCADA syst	Latchir em; Rob
Introduct Timers, d definition	MODUI ion, Archi Counter, P n, robot con MODUI ments of pn	LE-5 tecture, 1 ractical E nponents LE-6 eumatic a	Ladder Examples , robot c	e Amplifie FUNDAM Logic pro- s of Ladd onfigurati PNE HYDRA aulic syste	er. ENTALS ROBOTIC ogramming er Program on, maniput CUMATIC AULIC SY ems, pump	OF PLC a CS g for differ nming, Int ulators. C AND YSTEMS s, compress	Sor, filte	08 Hours	Successi Latchir em; Rob
Introduct Fimers, d definition	MODUI ion, Archi Counter, P n, robot con MODUI ments of pn	LE-5 tecture, 1 ractical E nponents LE-6 eumatic a	Ladder Examples , robot c	e Amplifie FUNDAM Logic pro- s of Ladd onfigurati PNE HYDRA aulic syste	er. ENTALS ROBOTIC ogramming er Program on, maniput CUMATIC AULIC SY ems, pump	OF PLC a CS g for differ nming, Int ulators. C AND YSTEMS s, compress	Sor, filte	08 Hours bes of logic gates, on of SCADA syst 08 Hours er, control valves, pr	Latchir em; Rob ressure ms,
Introduct Timers, 0 definition Compor regulation	MODUI ion, Archi Counter, P n, robot con MODUI ments of pn n, relief va	LE-5 tecture, 1 ractical E mponents LE-6 eumatic a lves, accu	Ladder Examples, robot c	e Amplifie FUNDAM Logic pro s of Ladd onfigurati PNE HYDRA aulic syste , Electro-1	er. ENTALS ROBOTIC ogramming er Program on, manipu CUMATIC AULIC SY ems, pump Hydraulics	OF PLC a CS g for differ nming, Int ulators. C AND YSTEMS s, compress systems an	Sor, filte	08 Hours bes of logic gates, on of SCADA system 08 Hours er, control valves, puro-pneumatic system	Latchir em; Rob ressure ms,
Introduct Fimers, 0 definition Compose regulation Fext Bo 1. N	MODUI ion, Archi Counter, P n, robot con MODUI nents of pn n, relief va ok(s): Mechatroni	LE-5 tecture, 1 ractical E mponents LE-6 eumatic a lves, accu	Ladder Examples, robot c	e Amplifie FUNDAM Logic pro s of Ladd onfigurati PNE HYDRA aulic syste , Electro-1 Logic and	er. ENTALS ROBOTIC ogramming er Programon, maniput CUMATIC AULIC SY ems, pump Hydraulics d Data Acc	OF PLC a CS g for differ nming, Int ulators. C AND YSTEMS s, compress systems an	Sor, filte Robert	08 Hours Des of logic gates, on of SCADA system 08 Hours er, control valves, particely system Total hours: 48	Latchir em; Rob ressure ms,

		NARAY	ANA ENC	GINEERING	COLLEGE:G	UDUR		
					& MANAGEN			R2020
Semester	 T	Hours / Wee	k	Total hrs	Credit	M	ax Mark	s
Semester	L	T	P	101011115	C	CIE	SEE	TOTAL
	3	0	0	48	3	40	60	100
			co	URSE CONT	ENT			
MODU	LE – 1		PRINCI	PLES OF MA	NAGEMENT			8h
					anagement an			
-					nent, Fayol's			-
Manageria of manager		levels of orv of Motiv			approach t ry X andY; Hi			Functions Maslow's
-	of Huma	•	Corporate	-	-	OT Analy		Corporate
SocialResp					_	-		_
MODU					AND MAINTEI			8h
•••					fectingthe plan		•	
		•		U U	Types of plan	•		
U I		• •	•		intenance; Typ			-
ofReliabilit	ty – Definit	tion, MTBF,	Series, Par	allel and Serie	s-Paralleldevice	e configuration	ns; Redu	indancy.
MODU	LE-3			Work St	udy			8h
Work Stud	y – Definit	tion, Objecti	ves. Metho		ps Involved ,A	nalysis of wo	rk metho	ods using
					es of motion eco			U
			-	ermination of	allowances and	l standard tin	ne.Job e	valuation
		ectives and p	orinciples	Materiala Mar				01
MODU		~~~		Materials Mar	6			8h
MATERIA	LS MANA	GEMENT	Objectives	of Materials N	lanagement, Sto	ores managem	nent and	
stores reco	rds, Purch	ase manage	ment, Valu	e Analysis,Inv	ventory Models	- Determinist	tic mode	els- EOQ
			-	-	Models with Pr			
Psychologi	cal attitude	s to work ar	d working	conditions - fa	tigue- Methods	of eliminating	g fatigue	
MODU	ULE-5		Proc	luction plannin	ng and control			8h
	planning a	and control-	Importance	e of planning -	Introduction a	nd need for a	new pro	oduct life
cycle.		100				T	1	1
	•	•			afetyInspector, ct, Industrial Di	0	n and an	alysis of
		ories Act, w	orkinen Co	•		sputesAct.		
MODU	JLE-6			Quality co	ontrol			8h
					n- Destructive			
	process capa	ability- Stati	stical quali	ty control – ca	uses of variation	on in quality-	control o	charts for
X and R.	n to concor	to of TOM	100 0: 0	iama and Qual	ity aimalaa (Dmia	fdecomintion	omler)	
Introductio	in to concer	ns of TQM,	150, 512 5	igina and Quai	ity circles (Brie	Total hou		hours
						10141 1101	AL 3. TU	iivul 3
Text Book		0 10 1						
				gement, Dhanj id Production	pat Rai, 2005 T	3 Martand Tel	sang,	
		d, 2nd Editic		Id Floduction				
				hanpat Rai, 20	10 R1 E. S. Bu	ffa		
	-	-	-	_			<i>.</i>	
			agement, I	Dr. C.Nadamur	i Reddy, New A	Age Internatio	onal	
Publishers,		ı, ∠UI1.						

Reference Book(s):

 Manufacturing Organization and Management, T.Amrine/ Pearson, 2nd Edition, 2004
 O.P. Khanna, Industrial Engineering and Management, Dhanpat Rai Publications, 17th Edition, 2014.
 Modern Production management, John Wiley, 1983 R2 Grant and Ieven Worth, Statistical Quality Control, McGraw Hill, 2000

4. Work Study by ILO(International Labour Organization)

		NARAY			COLLEGE:G	UDUR		
				AOBILE ENG				R2020
Semester	Ŧ	Hours / Wee		Total hrs	Credit		ax Mark	1
OE	L 3	<u> </u>	P	4.9	C 2	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100
			CO	OURSE CONT	TENT			
MODUI	LE – 1		BASIC	CS OF AN AU	TOMOBILE			8h
			L		ler automobile,			
Rear wheel drive, Front wheel drive, Four wheel drive, Engine construction, Types of automobile engines, Turbo charging, Super charging, Crank case ventilation, Oil filters, Oil pumps.								
		r charging, Ci				ps.		8h
	MODULE -2TRANSMISSION SYSTEM8hClutches- Principle- Types: Cone Clutch, Single Plate Clutch, Multi Plate Clutch, Magnetic and Centrifugal							
					h, Multi Plate Clesh, Constant I			
					ystem, Propelle			
				ial, Rear Axles		i onure i i		
	,		,	,				
MODU	LE-3			STEERING S	SYSTEM			8h
Requiremen	ts and fu	nctions of ste	ering syste	m, Layout of	steering system	n, Steering Ge	eometry	- Camber,
Castor, King	g Pin Ral	ke, Combined	l Angle To	e-In, Center P	oint Steering.	Types Of Stee	ering Me	echanism –
Ackerman S	Steering N	Aechanism, I	Davis Steer	ing Mechanisi	n, Steering Ge	ars – Types,	Steering	g Linkages,
Power steeri	-			C	C C	• •		
MODU	LE-4		S	USPENSION	SYSTEM			8h
Objects of S	uspensior	N Systems – R	Rigid Axle S	Suspension Sys	stem, Torsion B	ar. Shock Abs	sorber. I	ndependent
Suspension	-		0	T	,	,	,	··· I · · · · ·
	•	1 1 1 5	1 0	** 1 1. *		D	1	
•••	stem: Me	chanical Bra	ake System	h, Hydraulic I	Brake System,	Pneumatic ai	nd Vacu	ium Brake
Systems.								
MODU	LE-5		EMISSI	ONS FROM	AUTOMOBIL	ES		8h
					ontrol-Modern			
					esel Injection, E			ıtive
Energy Sour	rces– Hyd	rogen, Bioma	ass, Alcoho	ls, LPG, CNG	– Their Merits	And Demerits	•	
MODU	LE-6		Ε	LECTRICAL	SYSTEM			8h
Charging Ci	ircuit, Ge	nerator, Curre	ent – Volta	ge Regulator -	- Starting Syste	m, Bendix Dı	rive, Me	chanism of
	vitch, Lig	hting System	s, Horn, W	viper, Fuel Ga	uge – Oil Press	ure Gauge, E	Ingine T	emperature
Indicator.								_
						Total hou	rs: 48]	nours
Text Book	(s):						L.	
					tandard Publish	ers distributor	r.	
2. Automob	ile Engine	eering, R.K.R	ajput, Laks	hmi Publicatio	n.			
Reference								
	•	ering, Joseph						
	•	•		FMH, 10th edi				
	•	•	÷	/Scitech Public	cation.			
	Automotive engines, Newton, Steeds & Garret.							

NARAYANA ENGINEERING COLLEGE:GUDUR									
Basics of Mechanical Engineering									
	H	Iours / Wee	k	Total	Credit		Max Mar	ks	
Semester				hrs					
	L	Т	Р		С	CIE	SEE	TOTAL	
OE	3	0	0	48	3	40	60	100	
			CO	URSE CO	DNTENT				

MODULE – 1	Properties of Steam	8 Hours
.Properties of Steam: Steam for	mation, Types of Steam, Enthalpy	v, Specific volume, Internal

energy and dryness fraction of steam, use of Steam tables, steam calorimeters

MODULE -2	Power Plant Engineering	8 Hours				
Introduction – Energy Renewable and Non – Renewable Energy Sources – Classification of Power						
Plants based on Sources of Energy	- Thermal Power Plant or Steam Po	ower Plant – Hydro Electric Power				

Nuclear Power Plant – Diesel Power Plant – Gas Turbine Power Plant

MODULE-3	Pumps & Turbines	8Hours					
Pumps – Classification of Pumps, Centrifugal Pump, Applications of Centrifugal Pump, Priming,							
Reciprocating Pumps, Single Actin	Reciprocating Pumps, Single Acting Reciprocating Pump, , –Hydraulic Turbine – Classification of						
Hydraulic Turbines, Impulse Turbine, Reaction Turbine, Difference between Impulse and Reaction							
Turbine.		-					

MODULE-4 Design & Manufacturing 8 Hours	MODULE-4	Design & Manufacturing	8 Hours
---	----------	------------------------	---------

General considerations of design, design process. Selection of Engineering Materials - properties – Manufacturing considerations in the design.

Types of manufacturing processes -casting, arc welding & gas welding and its applications

MODULE-5	I.C Engine	8 Hours

. Heat Engine – Types of Heat Engine – External Combustion Engine, IC Engine (Internal Combustion), Classification of I.C. Engine, Two Stroke Petrol Engine, Four Stroke Engine, Valve Timing Diagram, Port Timing Diagram, Comparison of Two Stroke and Four Stroke Engines, Comparison of Petrol Engine and Diesel Engine, Fuel System of a Petrol Engine, Ignition Systems.

MODULE-6	Refrigeration and Air	8 Hours			
	Conditioning				
Introduction – Terminology of Refrigeration and Air Conditioning – Properties of Refrigerants – List of					
Commonly used Refrigerants – Typ	bes of Refrigerating System – Air Co	onditioning – Application of Air			

Total hours: 48 hours

Text Book(s):

1. Power Plant Engineering by PK Nag, 3rd edition McGraw Hill Publication.

Conditioning – Psychrometry – Window Air Conditioning.

- 2. Elements of Mechanical Engineering Fourth Edition S Trymbaka Murthy, University Press.
- 3. Basic Civil and Mechanical Engineering, by Prof.V.Vijayan, Prof.M.Prabhakaran and Er.R.Viashnavi, S.Chand Publication.

Reference Book(s):

- 1. Refrigeration and Air Conditioning by CP Arora, 3rd edition McGraw Hill Publication.
- 2. Internal Combustion Engines by VGanesa, 4th Edition, McGraw Hill Publication.
- 3. Basic Mechanical Engineering by DK Chavan and G K Pathak ,Standard Book House, 2016 edition.

					CERING C		GE:GU		
					& ROBO	TICS		R2020	
Semester	-	ours / We		Total	Credit		~~~	Max Marks	
	L	T	P	hrs	C	CIE	SEE	Т	OTAL
OE	3	0	0	48	3	40	60		100
				COUR	SE CONT	ENT			
	DULE –				TO AUT				Hours
									, Manufacturir
									ion processing
									s for automatio
-								matic insertion	
	DULE -2				ATED FLO			1: 0	08 Hours
									line with/witho
							ystems	assembly lin	e, line balancir
methods, w	ays of im	proving l	line balan	nce, flexibl	e assembly	lines.			
MO	DULE-3			INDUST	FRIAL RO)BOTI(<u>rs</u>		08 Hours
			hotics.					ons function	al line diagram
									considered in t
design of gr		Compon	ents com	mon types	or arms, j	joints gr	ippers, i		
design of gi	IDDEIS.								
Dohot Ann	. .	n Manuf		Matarial	Tronsfor	Motori	1 hand	ling looding	and unloading
	lication i		•					v v	and unloading
Process - sp	lication i		•	ling & spra	y painting	- Assen	bly and	ling, loading	
Process - sp MO	lication i bot and co DULE-4	ontinuous	arc weld	ling & spra KINEN	y painting IATIC AN	- Assen	bly and S	Inspection.	and unloading 08 Hours transition - D-
Process - sp MO	lication i oot and co DULE-4 r Kinema	ontinuous atics: Ho	arc weld	ling & spra KINEN is transfor	y painting IATIC AN	- Assen	bly and S	Inspection.	
Process - sp MO Manipulato notation, Fo MO	lication i bot and co DULE-4 r Kinema brward in DULE-5	ontinuous atics: Ho verse kin	arc weld mogenou ematics	ling & spra KINEM is transfor	ty painting IATIC AN mations as	- Assen NALYSI s applica	ably and S	Inspection.	08 Hours transition - D- 08 Hours
Process - sp MO Manipulato notation, Fo MO Robot actu	lication i pot and co DULE-4 r Kinema prward inv DULE-5 ators and	atics: Ho verse kin d Feedba	arc weld mogenou ematics	ling & spra KINEM is transfor A ponents: A	y painting IATIC AN mations as ACTUAT(Actuators,	- Assen NALYSI 5 applica DRS Pneuma	tic, Hy	Inspection.	08 Hours transition - D- 08 Hours tors, Electric
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo	lication i pot and co DULE-4 r Kinema prward inv DULE-5 ators and ptors, con	atics: Ho verse kind d Feedba	arc weld mogenou ematics ack comp Position	ling & spra KINEM is transfor A ponents: A	y painting IATIC AN mations as ACTUAT(Actuators,	- Assen NALYSI 5 applica DRS Pneuma	tic, Hy	Inspection.	08 Hours transition - D- 08 Hours tors, Electric
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo	lication i pot and co DULE-4 r Kinema prward inv DULE-5 ators and ptors, con	atics: Ho verse kind d Feedba	arc weld mogenou ematics ack comp Position	ling & spra KINEM Is transfor A ponents: A sensors -	A painting IATIC AN mations as ACTUATC Actuators, potention	- Assen NALYSI 5 applica DRS Pneuma neters, re	tic, Hy	Inspection.	08 Hours transition - D- 08 Hours tors, Electric velocity senso
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens	lication i pot and co DULE-4 r Kinema prward inv DULE-5 ators and ptors, con	atics: Ho verse kind d Feedba	arc weld mogenou ematics ack comp Position	ling & spra KINEM Is transfor A ponents: A sensors -	y painting IATIC AN mations as ACTUAT(Actuators,	- Assen NALYSI 5 applica DRS Pneuma neters, re	tic, Hy	Inspection.	08 Hours transition - D- 08 Hours tors, Electric
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI	DULE-4 r Kinema orward inv DULE-5 ators and otors, con sors, Prox DULE-6	atics: Ho verse kind d Feedba nparison. imity ser	arc weld mogenou ematics ack comp Position asors.	ling & spra KINEM Is transfor A ponents: A sensors - DYNA	A painting IATIC AN mations as ACTUATO Actuators, potention MIC AN	- Assen VALYSI s applica DRS Pneuma neters, r ALYSIS	ibly and S ible to tic, Hy esolvers	Inspection. rotation and draulic actua , encoders -	08 Hours transition - D- 08 Hours tors, Electric velocity sensor 08 Hours
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato	DULE-4 r Kinema orward in DULE-5 pators and otors, con sors, Prox DULE-6 r Dynam	atics: Ho verse kind d Feedba nparison. imity ser	arc weld mogenou ematics ack comp Position asors. erential t	ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat	A painting IATIC AN mations as ACTUATC Actuators, potention MIC AN tions, Jaco	- Assen VALYSI 5 applica DRS Pneuma neters, ro ALYSIS bians, L	ibly and S ible to tic, Hy esolvers agrange	Inspection. rotation and draulic actua , encoders -	08 Hours transition - D- 08 Hours tors, Electric velocity sensor 08 Hours Newton - Eul
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations.	DULE-4 r Kinema orward in DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto	atics: Ho verse kind d Feedba nparison. imity ser ics: Diffe ry Plann	arc weld mogenou ematics ack comp Position asors. erential t ing: Traj	Ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla	ATICAN mations as ACTUATO Actuators, potention MICANA tions, Jaco nning and	- Assen VALYSI 5 applica DRS Pneuma neters, ro ALYSIS bians, L	ibly and S ible to tic, Hy esolvers agrange	Inspection. rotation and draulic actua , encoders -	08 Hours transition - D- 08 Hours tors, Electric velocity senso 08 Hours Newton - Eul
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations.	DULE-4 r Kinema orward in DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto	atics: Ho verse kind d Feedba nparison. imity ser ics: Diffe ry Plann	arc weld mogenou ematics ack comp Position asors. erential t ing: Traj	Ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla	ATICAN mations as ACTUATO Actuators, potention MICANA tions, Jaco nning and	- Assen VALYSI 5 applica DRS Pneuma neters, ro ALYSIS bians, L	ibly and S ible to tic, Hy esolvers agrange	Inspection. rotation and draulic actua , encoders - e - Euler and obstacles path	08 Hours transition - D- 08 Hours tors, Electric velocity senso 08 Hours 08 Hours Newton - Eul n planning, ske
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato	DULE-4 r Kinema orward in DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto	atics: Ho verse kind d Feedba nparison. imity ser ics: Diffe ry Plann	arc weld mogenou ematics ack comp Position asors. erential t ing: Traj	Ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla	ATICAN mations as ACTUATO Actuators, potention MICANA tions, Jaco nning and	- Assen VALYSI 5 applica DRS Pneuma neters, ro ALYSIS bians, L	ibly and S ible to tic, Hy esolvers agrange	Inspection. rotation and draulic actua , encoders -	08 Hours transition - D- 08 Hours tors, Electric velocity sensor 08 Hours Newton - Eul planning, ske 48 Hou
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations. motion, joir	ication i pot and co DULE-4 r Kinema orward in DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto nt integrat	atics: Ho verse kind d Feedba nparison. imity ser ics: Diffe ry Plann	arc weld mogenou ematics ack comp Position asors. erential t ing: Traj	Ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla	ATICAN mations as ACTUATO Actuators, potention MICANA tions, Jaco nning and	- Assen VALYSI 5 applica DRS Pneuma neters, ro ALYSIS bians, L	ibly and S ible to tic, Hy esolvers agrange	Inspection. rotation and draulic actua , encoders - e - Euler and obstacles path	08 Hours transition - D- 08 Hours tors, Electric velocity sensor 08 Hours Newton - Eul n planning, ske
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations. motion, joir	DULE-4 r Kinema orward inv DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto nt integrat	atics: Ho verse kind d Feedba nparison. imity ser ics: Diffe ry Plann ted motio	arc weld mogenou ematics ack comp Position sors. erential t ing: Traj on - straig	ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla ght line mo	ATICAN mations as ACTUATO Actuators, potention MICANA tions, Jaco nning and	- Assen VALYSI s applica DRS Pneuma neters, ru ALYSIS bians, L avoidan	ably and S able to tic, Hy esolvers agrange ace of o	Inspection. rotation and draulic actua , encoders - e - Euler and obstacles path Total hours	08 Hours transition - D- 08 Hours tors, Electric velocity senso 08 Hours Newton - Eul n planning, ske 48 Hou
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations. motion, joir Text Book 1. Aut	ication i pot and co DULE-4 r Kinema orward inv DULE-5 ators and otors, con sors, Prox DULE-6 r Dynam Trajecto nt integrat (s): tomation	d Feedba nparison. imity ser ics: Differry Plann ted motio	arc weld mogenou ematics ack comp Position asors. erential t ing: Traj on - straig	ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla ght line mo	A painting IATIC AN mations as ACTUATC Actuators, potention MIC AN tions, Jaco nning and tion. M,M.P. Gr	- Assen VALYSI s applica DRS Pneuma neters, ru ALYSIS bians, L avoidan	ably and S able to tic, Hy esolvers agrange ace of o	Inspection. rotation and draulic actua , encoders - e - Euler and obstacles path Total hours	08 Hours transition - D- 08 Hours tors, Electric velocity senso 08 Hours Newton - Eul n planning, ske 48 Hou
Process - sp MOI Manipulato notation, Fo MOI Robot actu Stepper mo Tactile sens MOI Manipulato formations. motion, joir Text Book 1. Aut 2. Inc	ication i pot and co DULE-4 r Kinema orward inv DULE-5 pators and otors, con sors, Prox DULE-6 r Dynam Trajecto nt integrat (s): tomation dustrial R	ontinuous atics: Ho verse kind d Feedba nparison. imity sen ics: Diffe ry Plann ted motio , Product obotics -	arc weld mogenou ematics ack comp Position sors. erential t ing: Traj on - straig ion syste M.P. Gro	ling & spra KINEM Is transfor A ponents: A sensors - DYNA ransformat jectory Pla tht line mo ms and CI poover, TM	A painting IATIC AN mations as ACTUATO Actuators, potention MIC AN tions, Jaco unning and tion. M,M.P. Gr H.	- Assen VALYSI s applica DRS Pneuma neters, ru ALYSIS bians, L avoidan	ably and S able to tic, Hy esolvers agrange agrange ace of o	Inspection. rotation and draulic actua , encoders - e - Euler and obstacles path Total hours	08 Hours transition - D 08 Hours tors, Electric velocity senso 08 Hours 08 Hours Newton - Eu planning, ske 48 Hou s

2.Robotics : Fu K S, R.C. Gonazalez and C.S.G Lee, McGraw Hill, 2008 3.Introduction to Robotics, Mechanics and Control: John J.Craig, Pearson Education, 3rd ed., 2009.

								D2020
			Enginee	ering Mate	erials			R2020
emester	Н	ours / Weel	k	Total	Credit		Max Mar	rks
, ennester	L	T	P	hrs	C	CIE	SEE	TOTAL
	3	0	0	48	3	40	60	100
			CO	URSE CO	NTENT		•	1
N	IODULE –	1	Stu	ructure of	Metals		8 Ho	urs
Plain C Cast Ire Experime equilibriu congruen allotropy, and prope An, Cu-S	e. Iron– Iron arbon Steel ons: types, p MODULE - ental method im cooling a t melting in , eutectoid, p erties of allo Sn andFe-Fe MODULE-	Is: types, proporties a 2 2 ds of const and heating termediate peritectoid points. Study of 3 3	ruction of constraints, phases, per reactions, pf importants, particular termination of the section of the sect	d applicati ions. ibrium of equilibrium Lever rule ritectic rea bhase rule, t binary ph Ietals & A	ons Diagrams m diagrams c, coring mis action. Trans relationship ase diagram Alloys	, Isomorp scibility ga sformations between e s of Cu-Ni	8 Ho bhous alloy ps, eutectic s in the sol equilibrium -, Al-Cu, B 8 Ho	y systems, e systems, lid state – diagrams Bi-Cd, Cu- urs
cast iron, properties steels.	ns and Stee Spheriodal s of plain c ous Metals	graphite ca carbon steel	ast iron, A ls, Low al	lloy cast in	rons. Classi	fication of	steels, stru	icture and
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c	graphite ca carbon stee and Alloys ies of coppe	ast iron, A ls, Low al s: er and its a	lloy cast in loy steels, lloys, Alur	rons. Classi Hadfield r ninium and	fication of nanganese its alloys, T	steels, stru steels, too Fitanium an	cture and l and die
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert	graphite ca carbon stee and Alloys ies of coppe	ast iron, A ls, Low al s: er and its a He	lloy cast in loy steels, lloys, Alur eat treatm	rons. Classi Hadfield r ninium and ent of Alloy	fication of nanganese its alloys, 7 7 s	steels, stru steels, too Fitanium an 8	acture and 1 and die nd its alloys Hours
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert	graphite ca carbon steel and Alloys ies of coppe 4 ments on E ring , Harde	ast iron, A ls, Low al er and its a He ron – Iron	lloy cast in loy steels, lloys, Alur eat treatm carbon sy	rons. Classi Hadfield r ninium and ent of Alloy rstem, Anne	fication of nanganese its alloys, 7 7 <mark>5</mark> aling, norr	steels, stru steels, too Fitanium an 8 nalizing, H	acture and 1 and die ad its alloys Hours lardening,
cast iron, properties steels. Non-ferr Structure I Effect of a TTT diagr Cryogenic	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper	graphite ca carbon stee and Alloys ies of coppe 4 ments on E ring , Harde f alloys.	ast iron, A ls, Low al er and its a ron – Iron enability, su CRYS'	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - ha	rons. Classi Hadfield r ninium and ent of Alloy rstem, Anne rdening met	fication of nanganese its alloys, 7 7 <u>s</u> aling, norr hods, Age	steels, stru steels, too Fitanium an 8 nalizing, H	treatment,
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE alloying ele ams, temper treatment o MODULE	graphite ca carbon steel and Alloys ies of coppe 4 ments on It ring , Harde f alloys. 5 ucture of m	ast iron, A ls, Low al er and its a ron – Iron enability, su CRYS' AT netals, Calc	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - har TAL STRU OMIC PA	rons. Classi Hadfield r ninium and ent of Alloy rstem, Anne rdening met JCTURE & CKING	fication of nanganese its alloys, 7 / <mark>s</mark> aling, norr hods, Age	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho t	treatment,
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper treatment o MODULE- n crystal str d HCP cryst in crystals,	graphite ca carbon steel and Alloys ies of copper 4 ments on If ring , Harde f alloys. 5 ructure of m cal structure point, line,	ast iron, A ls, Low al s: er and its a ron – Iron enability, su CRYS' AT netals, Calc s. , surface an	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - has TAL STRU OMIC PA ulation of a nd volume	rons. Classi Hadfield r ninium and ent of Alloy rstem, Anne rdening met JCTURE & <u>CKING</u> atomic pack defects. Me	fication of nanganese its alloys, 7 7 <mark>s saling, norr hods, Age ting factor t echanisms of</mark>	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Hot for simple of of plastic d	treatment, urs urs urs urs urs urs urs urs
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper treatment o MODULE- n crystal str d HCP cryst in crystals, l twinning, etch equatio	graphite ca carbon steel and Alloys ies of copper 4 ments on It ring , Harde f alloys. 5 ucture of m cal structure point, line, Effect of d on, cold wo	ast iron, A ls, Low al er and its a er and its a non – Iron enability, su CRYS' AT netals, Calc s. , surface an lislocations orking and	Iloy cast in loy steels, Iloys, Alur eat treatm carbon sy urface - hat TAL STRU OMIC PA ulation of a nd volume on plastic hot worki	rons. Classi Hadfield r ninium and ent of Alloy stem, Anne rdening met JCTURE & <u>CKING</u> atomic pack defects. Me c deformation ng, strain H	fication of nanganese its alloys, 7 75 aling, norr hods, Age ting factor to echanisms of on, Critical Iardening a	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho for simple of of plastic d resolved s and Bauchi	teture and and die ad its alloys Hours Iardening, treatment, urs cubic, BCC, leformation: shear stress, inger effect.
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE alloying ele ams, temper treatment o MODULE n crystal str d HCP cryst in crystals, l twinning,	graphite ca carbon steel and Alloys ies of copper 4 ments on It ring , Harde f alloys. 5 ucture of m cal structure point, line, Effect of d on, cold wo	ast iron, A ls, Low al er and its a er and its a non – Iron enability, su CRYS' AT netals, Calc s. , surface an lislocations orking and	Iloy cast in loy steels, Iloys, Alur eat treatm carbon sy urface - hat TAL STRU OMIC PA ulation of a nd volume on plastic hot worki	rons. Classi Hadfield r ninium and ent of Alloy stem, Anne rdening met JCTURE & <u>CKING</u> atomic pack defects. Me c deformation ng, strain H	fication of nanganese its alloys, 7 75 aling, norr hods, Age ting factor to echanisms of on, Critical Iardening a	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho for simple of of plastic d resolved s and Bauchi	teture and and die ad its alloys Hours Iardening, treatment, urs cubic, BCC, leformation: shear stress, inger effect.
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper treatment o MODULE- n crystal str d HCP cryst in crystals, l twinning, etch equatio	graphite ca carbon steel and Alloys ies of copper- 4 ments on It ring , Harded f alloys. 5 ructure of m al structure point, line, Effect of d on, cold wo llisation, Gr	ast iron, A ls, Low al er and its a ron – Iron enability, su CRYS' AT netals, Calc s. , surface an islocations orking and rain growth	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - hat TAL STRU OMIC PA ulation of a nd volume on plastic hot worki	rons. Classi Hadfield r ninium and ent of Alloy rstem, Anne rdening met JCTURE & <u>CKING</u> atomic pack defects. Me c deformation ng, strain F fect on mech	fication of nanganese its alloys, 7 75 aling, norr hods, Age ting factor to echanisms of on, Critical Iardening a	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho for simple of of plastic d resolved s and Bauchi	teture and and die ad its alloys Hours lardening, treatment, urs cubic, BCC, leformation: shear stress, inger effect. netals.
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper treatment o MODULE- n crystal str d HCP crysta in crystals, l twinning, etch equation y, Recrysta MODULE- re: Type of , modes of f : Types of content, Loc ement for the Creep Test a creep curve	graphite ca carbon steel and Alloys ies of copper- 4 ments on It ring , Harde f alloys. 5 ucture of m al structure point, line, Effect of d on, cold wo llisation, Gr 6 f fracture i racture, duc fatigue load Structure of w cycle fat e fatigue lift c, Creep cu e and stress	ast iron, A ls, Low al er and its a er and its a <u>He</u> ron – Iron enability, su <u>CRYS'</u> AT etals, Calc s. , surface an islocations orking and rain growth <u>Con</u> n metals, ctile-brittle ling, Expen fatigue fr igue, Cum e. rupture cu	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - hat TAL STRU OMIC PA ulation of a nd volume on plastic hot workin and its eff mposite M Ductile an transition. imental de actured spoulative fati o strength, rve.	rons. Classi Hadfield r ninium and ent of Alloy stem, Anne rdening met JCTURE & CKING atomic pack defects. Me e deformation g, strain F fect on mech faterials id brittle fr etermination ecimen, Eff gue damage Creep defo	fication of nanganese its alloys, T 7s aling, norr hods, Age ing factor to on, Critical lardening a hanical prop acture, Gri acture, Gri of fatigue ect of meta b, Factors to pormation n	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho for simple of of plastic d resolved s and Bauchi perties of n 8 Ho iffith theor strength (I allurgical v o be conside nechanisms	teture and and die ad its alloys Hours Iardening, treatment, urs cubic, BCC, leformation: shear stress, inger effect. hetals. urs ry of brittle RR– Moore variables on ered for the , difference
cast iron, properties steels. Non-ferr Structure	Spheriodal s of plain c ous Metals and propert MODULE- alloying ele ams, temper treatment o MODULE- n crystal str d HCP crysta in crystals, twinning, etch equatio y, Recrysta MODULE- re: Type of , modes of f : Types of : Types of comment for the Creep Test	graphite ca carbon steel and Alloys ies of copper- 4 ments on It ring , Harde f alloys. 5 ucture of m al structure point, line, Effect of d on, cold wo llisation, Gr 6 f fracture i racture, duc fatigue load Structure of w cycle fat e fatigue lift c, Creep cu e and stress	ast iron, A ls, Low al er and its a er and its a <u>He</u> ron – Iron enability, su <u>CRYS'</u> AT etals, Calc s. , surface an islocations orking and rain growth <u>Con</u> n metals, ctile-brittle ling, Expen fatigue fr igue, Cum e. rupture cu	lloy cast in loy steels, lloys, Alur eat treatm carbon sy urface - hat TAL STRU OMIC PA ulation of a nd volume on plastic hot workin and its eff mposite M Ductile an transition. imental de actured spoulative fati o strength, rve.	rons. Classi Hadfield r ninium and ent of Alloy stem, Anne rdening met JCTURE & CKING atomic pack defects. Me e deformation g, strain F fect on mech faterials id brittle fr etermination ecimen, Eff gue damage Creep defo	fication of nanganese its alloys, T 7s aling, norr hods, Age ing factor to on, Critical lardening a hanical prop acture, Gri acture, Gri of fatigue ect of meta b, Factors to pormation n	steels, stru steels, too Fitanium an 8 nalizing, H hardening t 8 Ho for simple of of plastic d resolved s and Bauchi perties of n 8 Ho iffith theor strength (I allurgical v o be conside nechanisms	teture and and die ad its alloys Hours Iardening, treatment, urs cubic, BCC, leformation: shear stress, inger effect. hetals. urs ry of brittle RR– Moore variables on ered for the , difference

1. Introduction to Physical Metallurgy / Sidney H.Avener.

2. A Text of Essential of Materials science and engineering/ DonaldR.Askeland/Thomson.

3.Dr Material Science and Metallurgy/kodgire

4. V. Raghavan, "Material Science and Engineering", 4thEdition, Prentice Hall of India Ltd., 1994.

Reference Book(s):

1.F Science of Engineering Materials /Agarwal

2. Engineering materials and metallurgy/R. K. Rajput/S.Chand.

3. Engineering Materials and Their Applications – R. A Flinn and P K Trojan / JaicoBooks

4. William F Smith, Javad Hashemi, Ravi Prakash, "Material Science and Engineering", 5thEdition, McGraw Hill Education, 2014.

		TOTAL QUALITY MANAGEMENT							
Semester	H	Hours / Week			Credit	M	Max Marks		
	L	Т	Р		С	CIE	SEE	TOTAL	
	3	0	0	48	3	40	60	100	

	COURSE CONTENT	
MODULE – 1	Basic concepts of Total Quality Management	8h
Quality Costs, Basi	y, Dimensions of Quality, Quality Planning, Quality costs - Analysis 7 c concepts of Total Quality Management, Principles of TQM, Bar ality standards – Need of standardization - Institutions – bodies of st O 14000 series	riers to TQM
MODULE -2	Quality measurement systems	8h
Process managemen	it- Quality measurement systems (QMS) - developing and impleme	enting QMS -
nonconformance dat	abase- TQM tools & techniques- 7 QC tools- 7 New QC tools.	
Customer satisfactio Customer Retention,	n - Customer Perception of Quality, Customer Complaints, Service Qua	ality,
MODULE-3	Failure Analysis	8h
assignment matrix – focus team approach using control charts.		organization -
MODULE-4	Quality Function Development	8h
limitations of benchi yoke, Kaizen, Demin	velopment (QFD) – elements of QFD – benchmarking-Types- Advanta marking – Taguchi Analysis – loss function - Taguchi design of experir ng cycle. intenance (TPM) - Concept, Improvement Needs,	
MODULE-5	Lean Management	8h
v .	philosophy and creation of lean enterprise, JIT concepts-Kanban total quality management,	
MODULE-6	TQM Approaches	8h
		n of six sigma
	Total hours	: 48 hours
2Total Quality Mana 3. Janakiraman B. ar	et al., Total qualityManagement, 3rd ed., Pearson Education Asia, 2006. agement, D.R.Kiran, BS Publications, 2016 ad Gopal R.K., Total Quality Management, Prentice Hall India, 2006. amuel A., Total Quality Management, Prentice Hall India, 2006.	
Reference Book(s) 1. Evans J.R. and Lin Indian edition, Ceng	ndsay W.M., The management and Control of Quality, 8th ed., first	
2.Feigenbaum.A.V.	"Total Quality Management, McGraw Hill, 1991.	
3.Oakland.J.S. "Tota	l Quality Management Butterworth - Hcinemann Ltd., Oxford. 1989.	
4.Narayana V. and S 1996.	Sreenivasan, N.S. Quality Management - Concepts and Tasks, New Ag	geInternational

5.Zeiri. "Total Quality Management for Engineers Wood Head Publishers, 1991

NARAYANA ENGINEERING COLLEGE:GUDUR								
	INDUSTRIAL SAFETY AND HAZARD MANAGEMENT R2020							
Seme	Hou	rs / Weel	k	Total	Credit]	Max Marks
ster	L	Т	Р	hrs	С	CIE	SEE	TOTAL
OE	3	0	0	48	3	40	60	100

COURSE CONTENT				
MODULE – 1	Introduction	8 Hours		

Safety Programs, Engineering Ethics, Accident and Loss Statistics, Acceptable Risk, Public Perceptions, Nature of the Accident Process, Inherent Safety, Seven Significant Disasters.

Toxicology: Effect of Toxicants on Biological Organisms, Toxicological Studies, Dose versus Response, Models for Dose and Response Curves, Relative Toxicity, Threshold Limit Values, National Fire Protection Association (NFPA) Diamond.

MODULE -2	Industrial Hygiene	10 Hours

Government Laws and Regulations, OSHA: Process Safety Management, EPA: Risk Management Plan, DHS: Chemical Facility Anti-Terrorism Standards (CFATS) Industrial Hygiene: Anticipation and Identification, Evaluation, Control.

Source Models: Introduction to Source Models, Flow of Liquid through Holes, and Pipes, Flow of Gases or Vapors through Holes and Pipes, Flashing Liquids, Liquid Pool Evaporation or Boiling, Conservative Analysis.

MODULE-3	Fires and Explosions	08 Hours

The Fire Triangle, Distinction between Fires and Explosions, Definitions, Flammability Characteristics of Liquids and Vapors, Limiting Oxygen Concentration and Inerting, Flammability Diagram, Ignition Energy, Autoignition, Auto-Oxidation, Adiabatic Compression, Ignition Sources, Sprays and Mists, Explosions Concepts to Prevent Fires and Explosions: Inerting, Static Electricity and its Control, Explosion-Proof Equipment and Instruments, Ventilation, Sprinkler Systems, Miscellaneous Concepts for Preventing Fires and Explosions.

MODULE-4	Introduction to Reliefs	08 Hours
Relief Concepts, Definitions, Locat	ion of Reliefs, Relief Types and	Characteristics, Relief Scenarios,
Data for Sizing Reliefs, Relief Syste	ems. Relief Sizing : Conventional S	pring-Operated Reliefs in Liquid
and in Vapor or Gas Services, Ruptu	re Disc Reliefs in Liquid in Vapor	or Gas Services, Two-Phase Flow
during Runaway Reaction Relief, Pi	lot-Operated and Bucking-Pin Relie	efs, Deflagration Venting for Dust
and Vapor Explosions, Venting for	Fires External to Process Vessels, I	Reliefs for Thermal Expansion of

Process Fluids.

MODULE-5	Hazards Identification	06 Hours						
Process Hazards Checklists, Hazards Surveys, Hazards and Operability Studies, Safety Reviews, Other Methods, Risk Assessment: Review of Probability Theory, Event Trees, Fault Trees, QRA and LOPA								
MODULE-6	LEAKS AND LEAKAGES	08 Hours						
Cuill and leales as of liquids wantage	and and their minterne frame store	an toulta and continue anti						

Spill and leakage of liquids, vapors, gases and their mixture from storage tanks and equipment; Estimation of leakage/spill rate through hole, pipes and vessel burst; Isothermal and adiabatic flows of gases, spillage and leakage of flashing liquids, pool evaporation and boiling; Release of toxics and dispersion. Naturally buoyant and dense gas dispersion models; Effects of momentum and buoyancy; Mitigation measures for leaks and releases.

CASE STUDIES : Flixborough, Bhopal, Texas, ONGC offshore, HPCL Vizag and Jaipur IOC oilstorage depot incident; Oil, natural gas, chlorine and ammonia storage and transportation hazards

Total hours: 48 hours

Text Book(s):

1. Industrial Safety Management: Hazard Identification and Risk Control, L.M.Deshmukh, 2005 McGraw Hill Education (India) Private Limited.

1. Chemical Process Safety: Fundamentals with Applications, Daniel A. Crowl, Joseph F. Louvar, 3rd Edition, Prentice Hall, 2011.

2. D.A. Crowl and J.F. Louvar, Chemical Process Safety (Fundamentals with Applications), Prentice Hall, 2011.

Reference Book(s):

- R.K. Sinnott, Coulson & Richardson's, Chemical Engineering, Vol. 6, Elsevier India, 2006.
- Fawcett H.H. and W.S.Wood, Safety and accident prevention in Chemical operations 2ndediton John Wiley and Sons Inc. (1982).
- 3. Guidelines For Process Safety: Fundamentals in General Plant Operations, Center for Chemical Process Safety of the American Institute of Chemical Engineers, 1995. ILO OSH 2001.
- 4. A. K. Rohatgi, "Safety handling of Hazardous Chemicals", J. K. Enterprises, Mumbai, 1986

NARAYANA ENGINEERING COLLEGE :: GUDUR -

				FOR HON					
		NAKAYA	INA EINC						D 2020
Semester Hours / W			Waalt	INDUSTRIAL TRIBOLOGY				R2020	
							Max Marks		
L		T	P	hrs	C	CIE	SEE		TOTAL
IV	3	1	0	64	4	40	60		100
			C	OURSE CON	IENI				
MODULE – 1			INTRODUCTION				12 H		
Historical l	background,	practical in	mportanc	ce, and subse	equent use	in the f	ield. Lubr	icants:	Types and
specific fie	ld of applica	tions. Prop	perties of	lubricants, vi	iscosity, its	measure	ement, effe	ect of t	emperature
and pressur	e on viscosit	y, lubricatio	on types,	standard grad	tes of lubric	cants, and	d selection	of lubr	icants
]	MODULE -	2		FRIC	CTION				10 H
Origin, frict	tion theories,	measureme	ent meth	ods, friction of	of metals an	d non-m	etals.		
0									
		-		pacity, coeff		friction,	frictional	resist	ance in a
fixed/pivote	ed shoe beari	ng,center of	f pressur	e, numerical e	examples				
		0	•		indinp les.				
Wear -Type		Simple theo	•	WI ding Wear M	EAR echanism o	0			
Wear -Type wear – Mat situations –	es of wear – S erials for Ad Brittle Fract	Simple theo hesive and a ure – wear	Abrasive	WI ding Wear Me wear situation of Ceramics a	EAR echanism o ons – Corro nd Polymer	sive wear	r – Surface	Fatigu	Abrasive e wear
Wear -Type wear – Mat situations –	es of wear – S erials for Ad Brittle Fract MODULE-4	Simple theo hesive and 2 ure – wear	Ábrasive – Wear o	Wi ding Wear Me wear situation of Ceramics a LUBR	EAR echanism o ons – Corros nd Polymer ICANTS	sive wear s – Wear	r – Surface r Measuren	Fatigu nents.	Abrasive e wear 10 H
Wear -Type wear – Mat situations – Types and	es of wear – S erials for Ad Brittle Fract MODULE-4 properties	Simple theo hesive and a ure – wear f of Lubrica	Abrasive – Wear of ants – '	Wi ding Wear Me wear situation of Ceramics a LUBR Testing meth	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy	sive wear s – Wear /drodyna	r – Surface r Measuren mic Lubr	Fatigu nents.	Abrasive e wear 10 H – Elasto
Wear -Type wear – Mat situations – Types and hydrodynar	es of wear – S erials for Ad Brittle Fract MODULE- properties mic lubrication	Simple theo hesive and 2 ure – wear f of Lubrica on- Boundar	Abrasive <u>Vear c</u> ants – ' ry Lubric	Wi ding Wear Me wear situation of Ceramics a LUBR Testing method	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio	sive wear s – Wear drodyna n- Hydro	r – Surface r Measuren mic Lubr	Fatigu nents.	Abrasive e wear 10 H – Elasto
Wear -Type wear – Mat situations – Types and hydrodynar	es of wear – S erials for Ad Brittle Fract MODULE -4 properties nic lubricatio MODULE -5	Simple theo hesive and a ure – wear 4 of Lubrica on- Boundar 5	Abrasive – Wear o ants – ' ry Lubrio	Wi ding Wear Me wear situation of Ceramics a LUBR Testing meth cation – Solid BEARING I	EAR echanism o ons – Corro nd Polymer ICANTS nods – Hy Lubricatio MATERIA	sive wear s – Wear /drodyna n- Hydro LS	r – Surface r Measuren umic Lubr ostatic Lubr	Fatigu nents. ication	Abrasive e wear 10 H – Elasto 10H
Wear - Type wear – Mat situations – Types and hydrodynar Commonly	es of wear – S erials for Ad Brittle Fract MODULE -4 properties nic lubricatio MODULE -5	Simple theo hesive and a ure – wear f of Lubrica on- Boundar 5 ngs materia	Abrasive – Wear o ants – ' ry Lubrio	Wi ding Wear Me wear situation of Ceramics a LUBR Testing method	EAR echanism o ons – Corro nd Polymer ICANTS nods – Hy Lubricatio MATERIA	sive wear s – Wear /drodyna n- Hydro LS	r – Surface r Measuren umic Lubr ostatic Lubr	Fatigu nents. ication	Abrasive e wear 10 H – Elasto 10H
Wear - Type wear – Mat situations – Types and hydrodynar Commonly	es of wear – S erials for Ad Brittle Fract MODULE-4 properties nic lubricatio MODULE-5 used bearin	Simple theo hesive and a ure – wear of Lubrica on- Boundar 5 ngs materia g materials.	Abrasive – Wear of ants – ' ry Lubric als, and	Wi ding Wear Me wear situation of Ceramics a LUBR Testing meth cation – Solid BEARING I	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear /drodyna n- Hydro LS bearing	r – Surface r Measuren mic Lubr ostatic Lubr materials.	Fatigu nents. ication	Abrasive e wear 10 H – Elasto 10H
Wear -Type wear – Mat situations – Types and hydrodynar Commonly disadvantag	es of wear – S erials for Adi Brittle Fract MODULE-4 properties mic lubrication MODULE-5 used bearing ges of bearing MODU	Simple theo hesive and A ure – wear f of Lubrica on- Boundar 5 ngs materia g materials. JLE-6	Abrasive – Wear of ants – ' ry Lubric als, and	Wi ding Wear Me wear situation of Ceramics a LUBRI Testing meth cation – Solid BEARING I properties of NTRODUCT ENG	EAR echanism o ons – Corro nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear /drodyna n- Hydro LS bearing SURFAC G:	r – Surface r Measuren umic Lubr ostatic Lubr materials.	Fatigu nents. ication ication Advan 10 H	Abrasive e wear 10 H – Elasto 10H ntages and
Wear - Type wear – Mat situations – Types and hydrodynar Commonly disadvantag	es of wear – S erials for Adl Brittle Fract MODULE-4 properties nic lubricatio MODULE-5 used bearing ges of bearing MODU	Simple theo hesive and a ure – wear of Lubrica on- Boundar 5 ngs materia g materials. J LE-6 urface engin	Abrasive – Wear of ants – ' ry Lubrio als, and I neering.	Wi ding Wear Me wear situation of Ceramics a LUBRI Testing meth cation – Solid BEARING I properties of NTRODUCT ENG Surface modi	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear vdrodyna n- Hydro LS bearing SURFAC S: ransform	r – Surface r Measuren mic Lubr ostatic Lubr materials.	Fatigu nents. ication ication Advan 10 H ening, s	Abrasive e wear 10 H – Elasto 10H ntages and
Wear -Type wear – Mat situations – Types and hydrodynar Commonly disadvantag Concept ar melting, the	es of wear – S erials for Adi Brittle Fract MODULE-4 properties nic lubrication MODULE-5 used bearing ses of bearing MODU hd scope of st ermo chemica	Simple theo hesive and J ure – wear of Lubrica on- Boundar gmaterials. JLE-6 urface enginal processes	Abrasive – Wear of ants – f ry Lubric als, and neering. 5 S. Surface	Wi ding Wear Me wear situation of Ceramics a LUBRI Testing meth cation – Solid BEARING I properties of NTRODUCT ENG Surface modi e Coating – pl	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear vdrodyna n- Hydro LS bearing SURFAC S: ransform	r – Surface r Measuren mic Lubr ostatic Lubr materials.	Fatigu nents. ication ication Advan 10 H ening, s	Abrasive e wear 10 H – Elasto 10H ntages and
Wear -Type wear – Mat situations – Types and hydrodynar Commonly disadvantag Concept ar melting, the	es of wear – S erials for Adl Brittle Fract MODULE-4 properties nic lubricatio MODULE-5 used bearing ges of bearing MODU	Simple theo hesive and J ure – wear of Lubrica on- Boundar gmaterials. JLE-6 urface enginal processes	Abrasive – Wear of ants – f ry Lubric als, and neering. 5 S. Surface	Wi ding Wear Me wear situation of Ceramics a LUBRI Testing meth cation – Solid BEARING I properties of NTRODUCT ENG Surface modi e Coating – pl	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear vdrodyna n- Hydro LS bearing SURFAC S: ransform	r – Surface r Measuren mic Lubr ostatic Lubr materials.	Fatigu nents. ication ication Advan 10 H ening, s	Abrasive e wear 10 H – Elasto 10H ntages and
Wear -Type wear – Mat situations – Types and hydrodynar Commonly disadvantag Concept ar melting, the	es of wear – S erials for Adi Brittle Fract MODULE-4 properties nic lubrication MODULE-5 used bearing ses of bearing MODU hd scope of st ermo chemica	Simple theo hesive and J ure – wear of Lubrica on- Boundar gmaterials. JLE-6 urface enginal processes	Abrasive – Wear of ants – f ry Lubric als, and neering. 5 S. Surface	Wi ding Wear Me wear situation of Ceramics a LUBRI Testing meth cation – Solid BEARING I properties of NTRODUCT ENG Surface modi e Coating – pl	EAR echanism o ons – Corros nd Polymer ICANTS nods – Hy Lubricatio MATERIA of typical	sive wear s – Wear vdrodyna n- Hydro LS bearing SURFAC S: ransform	r – Surface r Measuren mic Lubr ostatic Lubr materials. CE ation harde ses, vapor p	Fatigu nents. ication ication Advan 10 H ening, s	Abrasive e wear 10 H – Elasto 10H ntages and

Text Book(s):

- 1. A. Harnoy. Bearing Design in Machinery Marcel Dekker Inc, New York, 2003
- 2. "Introduction to Tribology in bearings", B. C. Majumdar, Wheeler Publishing.
- 3. "Tribology, Friction and Wear of Engineering Material", I. M.Hutchings, Edward Arnold, London,1992.

Reference Book(s):

- 1. Cameron, Basic Lubrication theory, Longman, U.K., 1981.
- 2. E. P. Bowden and Tabor.D., Friction and Lubrication, Heinemann Educational Books Ltd., 1974.
- 3. M. M. Khonsari and E. R. Booser, Applied Tribology, John Willey & Sons, New York, 2001.
- 4. M. J. Neale (Editor), Tribology Handbook, Newnes. Butterworth-Heinemann, U.K., 1995.

		NARAYA	NA ENG	GINEERIN	G COLLEG	E: GUD	DUR		
				NON DEST	RUCTIVE	TESTIN	NG		R2020
Semester		Hours /	Week	Total	Credit		Max Ma	rks	
	L	Т	Р	hrs	С	CIE	SEE		TOTAL
IV	3	1	0	64	4	40	60		100
			C	OURSE CO	NTENT	I			
	MODUI	LE – 1		INTRO	DUCTION	N	12 I	I	
ntroduction	to various	non-destru	ctive me	thods. Comp	arison of D	estructive	e and Non-de	estruc	tive Tes
Codes, stand Applications	· •	ication and	l procedu	res. Visual In	nspection, C	ptical ai	ds used for vi	sual i	inspectio
Ν	MODULE -2	2	PE	NETRANT '	TESTING			10	H
hysical prin	nciples & pr	ocedure fo	r penetra	nt testing, Per	netrant testi	ng mater	ials, Penetran	t testi	ng
							nitations, Ap		
Case studies	by taking v	arious mar	nufacturin	ng defects.					
	MODULE-3		EDD	Y CURREN	T TESTIN	C.		12	н
1				COUSTIC I					
Γ	MODULE-4		MA	s, Applicatio GNETIC P. TESTIN FHERMOG	ns. Case stu ARTICLE G &		inciple of AE both ECT and	AE.	H
Principle of echniques,	MODULE-4 MPT, proc Advantages	edure use and Limit	MA T ed for tes ations, A	GNETIC P. TESTIN THERMOG sting a comp pplications. H	ns. Case stu ARTICLE G & RAPHY Ponent, Equ Principle of	ipment u	·	<u>АЕ.</u> 10 Г, М ed Ra	H agnetizin adiometr
Principle of echniques, Active therr	MODULE-4 MPT, proc Advantages	cedure use and Limit easuremer	MA T ed for tes ations, A	GNETIC P. TESTIN THERMOG sting a comp pplications. H	ns. Case stu ARTICLE G & RAPHY Ponent, Equ Principle of	ipment u	both ECT and used for MP graphy, Infrar	<u>АЕ.</u> 10 Г, М ed Ra	H agnetizir adiometr
Principle of echniques, Active therr MPT and Th	MODULE-4 MPT, proc Advantages nography m	eedure use and Limit easuremer	MA T ad for tes ations, Aj nts, Adva	GNETIC P. TESTIN THERMOG sting a comp pplications. H	ns. Case stu ARTICLE G & RAPHY ponent, Equ Principle of Limitations,	ipment u Thermog Applicat	both ECT and used for MP graphy, Infrar	AE. 10 Γ, Μ ed Ra tudies	H agnetizin adiometr
Principle of echniques, Active therr MPT and Th Principle, U BScan, C- S ncident Th	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Jltrasonic tra Scan, Applic	eedure use and Limit easuremer 7. ansducers, cations, In nission Te	MA T ad for tes ations, Aj its, Adva ULT Ultrasor spection	GNETIC P. TESTING THERMOG Sting a comp pplications. F ntages and L FRASONIC nic Flaw det Methods - N	ns. Case stu ARTICLE G & RAPHY Ponent, Equ Principle of Limitations, TESTING ection Equi Normal Inci	ipment u Applicat	both ECT and used for MP graphy, Infrar	AE. 10 T, M ed Ra tudies 10 splay ection	H agnetizir adiometr s based o DH A- sca n, Norm
Principle of echniques, Active therr MPT and Th Principle, U BScan, C- S ncident Th	MODULE-4 F MPT, proc Advantages mography m hermography MODULE-5 Jltrasonic tra Scan, Applic rough-transr	eedure use and Limit easuremer 7. ansducers, cations, In nission Te es.	MA T ad for tes ations, Aj its, Adva ULT Ultrasor spection	GNETIC P. TESTING THERMOG sting a comp pplications. If ntages and I TRASONIC nic Flaw det Methods - Magle Beam P	ns. Case stu ARTICLE G & RAPHY Ponent, Equ Principle of Limitations, TESTING ection Equi Normal Inci	ipment u Applicat	noth ECT and used for MP graphy, Infrar tions, Case st Modes of di se-Echo Insp	AE. 10 T, M ed Ra tudies 10 splay ection	H agnetizin adiometris based DH A- sca n, Norm
Principle of echniques, Active therr MPT and Th Principle, U 3Scan, C- S ncident The Applications	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Atrasonic trass Scan, Applic rough-transm s, Case studi MODU	cedure use and Limit easuremer 7. ansducers, cations, In nission Te es. JLE-6	MA T ad for tes ations, Aj atis, Adva ULT Ultrasor spection esting, An	GNETIC P. TESTING THERMOG sting a comp pplications. If ntages and L TRASONIC nic Flaw det Methods - N ngle Beam P RADIOC	ns. Case stu ARTICLE G & RAPHY Donent, Equ Principle of Limitations, TESTING ection Equi Vormal Inci- Pulse-Echo t GRAPHY	ipment u Thermog Applicat	both ECT and used for MP graphy, Infrar tions, Case st Modes of di se-Echo Insp Advantages a	AE. 10 T, M ed Ra tudies 10 splay ection nd Li	H agnetizin adiometr based o DH A- sca n, Norm imitation
Principle of echniques, Active therr MPT and Th Principle, U BScan, C- S ncident The Applications Principle o Fechniques	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Jltrasonic tra Scan, Applic rough-transm s, Case studi MODU f Radiograp – Single wa	cedure use and Limit easuremer 7. 5 ansducers, cations, In nission Te es. 7 LE-6 bhy, Type: Il single in	MA T ad for tes ations, Aj nts, Adva ULT Ultrasor spection esting, An s, Effect nage, Dou	GNETIC P. TESTING THERMOG Sting a composition of radiation	ns. Case stu ARTICLE G & RAPHY Donent, Equ Principle of Limitations, TESTING ection Equi Vormal Inci- vulse-Echo t GRAPHY on Film, Metration, Mu	ipment u Thermog Applicat ipment, 1 dent Pul esting, 4 Radiogra	both ECT and used for MP graphy, Infrar ions, Case st Modes of di se-Echo Insp Advantages a 10 H	AE. 10 T, M ed Ra tudies 10 splay ection nd Li	H agnetizin adiometr based o DH A- sca n, Norm imitation
Principle of echniques, Active therr MPT and Th Principle, U BScan, C- S ncident The Applications Principle o Fechniques	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Jltrasonic tra Scan, Applic rough-transm s, Case studi MODU f Radiograp – Single wa	cedure use and Limit easuremer 7. 5 ansducers, cations, In nission Te es. 7 LE-6 bhy, Type: Il single in	MA T ad for tes ations, Aj nts, Adva ULT Ultrasor spection esting, An s, Effect nage, Dou	GNETIC P. TESTING THERMOG sting a comp pplications. F ntages and L FRASONIC nic Flaw det Methods - N ngle Beam P RADIOC of radiation uble wall Pen	ns. Case stu ARTICLE G & RAPHY Donent, Equ Principle of Limitations, TESTING ection Equi Vormal Inci- vulse-Echo t GRAPHY on Film, Metration, Mu	ipment u Thermog Applicat ipment, 1 dent Pul esting, 4 Radiogra	both ECT and used for MP graphy, Infrar tions, Case st Modes of di se-Echo Insp Advantages a 10 H aphic imagin Penetration te	AE. 10 T, M ed Ra tudies 10 splay ection nd Li	H agnetizin adiometr based o DH A- sca n, Norm imitation aspection jue, Real
Principle of echniques, Active therr MPT and Th Principle, U BScan, C- S ncident The Applications Principle o Fechniques	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Jltrasonic tra Scan, Applic rough-transm s, Case studi MODU f Radiograp – Single wa	cedure use and Limit easuremer 7. 5 ansducers, cations, In nission Te es. 7 LE-6 bhy, Type: Il single in	MA T ad for tes ations, Aj nts, Adva ULT Ultrasor spection esting, An s, Effect nage, Dou	GNETIC P. TESTING THERMOG sting a comp pplications. F ntages and L FRASONIC nic Flaw det Methods - N ngle Beam P RADIOC of radiation uble wall Pen	ns. Case stu ARTICLE G & RAPHY Donent, Equ Principle of Limitations, TESTING ection Equi Vormal Inci- vulse-Echo t GRAPHY on Film, Metration, Mu	ipment u Thermog Applicat ipment, 1 dent Pul esting, 4 Radiogra	both ECT and used for MP graphy, Infrar ions, Case st Modes of di se-Echo Insp Advantages a 10 H aphic imagin	AE. 10 T, M ed Ra tudies 10 splay ection nd Li	H agnetizin adiometr based o DH A- sca n, Norm imitation
Principle of echniques, Active therr APT and Th Principle, U BScan, C- S ncident The Applications Principle o Cechniques	MODULE-4 MPT, proc Advantages nography m nermography MODULE-5 Jltrasonic tra Scan, Applic rough-transm s, Case studi MODU f Radiograp – Single wa	cedure use and Limit easuremer 7. 5 ansducers, cations, In nission Te es. 7 LE-6 bhy, Type: Il single in	MA T ad for tes ations, Aj nts, Adva ULT Ultrasor spection esting, An s, Effect nage, Dou	GNETIC P. TESTING THERMOG sting a comp pplications. F ntages and L FRASONIC nic Flaw det Methods - N ngle Beam P RADIOC of radiation uble wall Pen	ns. Case stu ARTICLE G & RAPHY Donent, Equ Principle of Limitations, TESTING ection Equi Vormal Inci- vulse-Echo t GRAPHY on Film, netration, Mu ations. Case	ipment u Thermog Applicat ipment, 1 dent Pul esting, 4 Radiogra	both ECT and used for MP graphy, Infrar tions, Case st Modes of di se-Echo Insp Advantages a 10 H aphic imagin Penetration te	AE. 10 T, M ed Ra tudies 10 splay ection nd Li	H agnetizi adiometri based DH A- sca n, Norm imitation aspection jue, Rea

- 1. Baldev Raj, Jeyakumar, T., Thavasimuthu, M., "Practical Non Destructive Testing" Narosa publishing house, New Delhi, 2006.
- Krautkramer. J., "Ultra Sonic Testing of Materials", 1st Edition, Springer Verlag Publication, New York, 1996.

 Reference Book(s):

 1. Peter J. Shull "Non Destructive Evaluation: Theory, Techniques and Application" Marcel
 Dekker, Inc., New York, 2002.

		NARAYA	NA ENO	GINEERING	G COLLEG	E: GUE	UR		
				EERING &				R202	20
Semester		Hours /	Week	Total	Credit		Max Mar	ks	
ľ	L	Т	Р	hrs	С	CIE	SEE	TOT	AL
IV	3	1	0	64	4	40	60	100	
			CO	OURSE CO	NTENT	1			
	MODUI	LE – 1	BAS	SIC CONCE ENGI	PTS OF RINEERING		E	12 H	
Engineering of Reverse Engineering 	g through exa Engineering g, Levels of a	ample, reas , conceptu bstraction:	sons for a al Syster	reverse engin	eering, proc or Reverse	cess for l Engineer	understandir Reverse Engir ing, Difficult ural level	neering, Pl	hase
I	MODULE -2	2		METHO	DOLOGY			10 H	H
detail, Reve	erse engineeri	ing in vario		uter software	application	n,	technical asp		
	MODULE-3	3		SOFTWAR	RE REVER IEERING	SE		12H	1
	• 1			ototyping Vs. ctive, Formati	*	•••••••	RP), Classific ess.	cation of R	tapio (
N	MODULE-5		STER	EO LITHOG	RAPHY S	YSTEM	S	10H	Ŧ
applications	s, Growth of Process para	RP indus	stry, and	classification	n of RP sy	stems. S	of RP syste tereo Lithogr files and ma	aphy Syst	tems
	MODUI	L E-6	SE		LASER SIN N DEPOSIT DELLING		G 10 H		
Selective	Laser Sinter	ring: Type	of ma	chine, Princi	iple of ope	eration,	process para	meters, D)ata
	for SLS, A Applications		. Fusion	Deposition	Modelling:	Principle	e, Process par	rameter, P	'ath
							Total	h: 64	h
				Text Book	r(c)•				

- 4. Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.
- 5. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer.
- 6. Noorani R, Rapid Prototyping: Principles and Applications in Manufacturing, John Wiley & Sons.

- 5. .Liou W L, Liou F W, Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC Press.
- 6. Kamrani A K, Nasr E A, Rapid Prototyping: Theory and practice, Springer

		NARAYA	NA ENG	GINEERING	COLLEG	E: GUI	OUR	
			S	SUPPLY CH	AIN MAN	AGEMF	INT	R2020
Semester		Hours /	Week	Total	Credit		Max Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	1	0	64	4	40	60	100
			C	OURSE CON	TENT			
	MODU	LE – 1		INT	TRODUCT	ION	12	H
Introduction	n -Supply Ch	ain – Fund	amentals	-Evolution-	Role in Eco	onomy -I	mportance - Dec	ision Phases
- Supplier-	Manufacture	r-Custome	r chain	Enablers/Dri	vers of Sup	ply Chai	n Performance.	
	MODULE -	2	R	DLE OF DIS VALUE D				10 H
Designing a	a distribution	logistics sy	ystem – C	Dutsourcing o	f distributio	on logisti	cs – Distinction	between
distribution	logistics and	l supply ch	ain mana	gement.				
	MODULE-	3	S	JPPLY CHA	IN NETW	ORK		12H
		·				-		
	MODULE-4	4	. St	Wide Sourci UPPLY CHA Factors Influe	IN NETW		lue Addition –	10 H Distribution
		Ũ			U		on Center Locat	
-							Network Design	
	isions using l			I		5	C	
	MODULE-5	5	I	PLANNIN(NVENTORY				10H
Managing s	supply chain	cycle inver					nalysing impact	of supply
							t life – cycle pro	
multiple ite	m -multiple	location inv	ventory n	nanagement. I	Pricing and	Revenue	Management	
	MODU	LE-6		. CURR	ENT TRE	NDS	10 H	
Supply Ch	ain Integratio	on - Buildi	ng partne	rship and trus	st in SC Va	lue of In	formation: Bullw	hip Effect
	•		•	-			- SC Mapping -S	•
	ig, Postpone		-			C		
		-						
							Total h:	64h
				Text Book	(s):			
				I CAL DUUK	(5)•			

- 1. D K Agrawal, Textbook of Logistics and Supply Chain Management, MacMillan 2003, 1st Edition.
- 2. G Raghuram & & N Rangaraj, Logistics and Supply Chain Management Cases and Concepts. Mac Millan.
- 3. Supply chain Logistics Management, Bowersox, Closs, Cooper, 2/e,TMH.

- 1. Supply chain management concepts and cases, Rhaul V. Altekar, PHI.
- 2.Principles of Supply Chain Management A balanced approach, Wisner, Leong, Tan, & Cengage.
- 3. Exploring Supply Chain theory and practice, Upendra Kachru, excel.
- 4. Supply Chain Management, R.P. Mohanty and S.G. Deshmukh, Jaico .

NARAYANA ENGINEERING COLLEGE :: GUDUR -

SYLLABUS FOR MINOR DEGREE

		NARAYA	NA ENG	GINEERING	G COLLEG	E: GUD	UR		
				ENGINEE	RING ME	CHANIC	S	R2020	
Semester		Hours / V	Week	Total	Credit		Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
	3	1	0	64	4	40	60	100	
			C	OURSE CO	NTENT				
	MODU	LE – 1		IN	FRODUCT	TION	12	H	
Compositio	on and resolution	ution of for	rces, par	allelogram la	aw, princip	le of tra	nsmissibility, ty	pes of force	
systems - c	oncurrent an	d concurren	nt coplan	ar forces, res	ultant of co	planar fo	rce systems cou	ple, moment	
-			-			-	quilibrium of co	-	
systems.	C			2		•			
	MODULE -	2		FRI	CTION			10 H	
Definition	of Friction a	nd its appli	cations, a	angle of fricti	on, angle of	repose.	coefficient of fri	ction. Types	
				-	-	_	locks on horizor		
inclined pla		,	1	11					
1		2		ANIAT VOTO	OF TRUE	STR		10 11	
	MODULE-			ANALYSIS OF TRUSSES sis of plane trusses by method of Joints, met				10 H	
	•	usses, analy	sis of pla	ane trusses by	y method of	Joints, n	nethod of section	is & tension	
coefficient	method.								
	MODULE-	4		CEN	TROID			10 H	
Definition	of Centroid &	& Centre of	Gravity,	Axes of Syn	nmetry, Loc	ation of (Centroid of Rectangle,		
Triangle, S	emicircle, Qu	uardrant and	d sector o	of a circle by	method of i	ntegratio	n. Numerical pro	oblems on	
Centroid of	Composite s	sections.							
	MODULE-	5		MOMENT	OF INERT	ТА		12 H	
			andiaula				em, and momen		
-					-				
-					-	al section	ns by method of	integration.	
numericai	FIODIenis on	moment of	mertia c	of composite s	section.				
	MODU	ПЕС		KINETIC	2 O-IZINIEN	ATICS	10 11		
							10 H		
				•		1 0	ectile, Relative n		
						-	ple, Work-energ	y method,	
Impulse-m	omentum equ	ation, Kine	etics of ci	ircular motion	n, Rotation.				
							Total h:	64 h	
				Text Book	:(s):				

- 1. S S Bhavikatti, "Engineering Mechanics", 4th edition, New Age International, 2008.
- 2. R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications, 2010
- 3. IrvingShames, GKMRao, "EngineeringMechanics:Statics andDynamics", 4thedition, Pearson, 2009.

- BasudebBhattacharya., "EngineeringMechanics", 2ndedition, OxfordUniversityPress (India), 2015.
- 2. K L Kumar, VeenuKumar, "Engineering Mechanics", 4th edition, Tata McGrawHill,2010.
- 3. Engineering Mechanics , R.S.Khurmi, S.Chand, 2012.

NARAYANA ENGINEERING COLLEGE:GUDUR									
				THERN	MAL ENG	INEER	ING	R2020	
Semester		Hours /	Week	Total	Credits		Max M	arks	
	L	Т	Р	hrs	C	CIE	SEE	TOTAL	
	3	1	0	64	4	40	60	100	

	COURSE CONTENT		
MODULE – 1	INTRODUCTION TO IC ENGINES	10 Hours	
IC ENGINES: Classifica	tion, Working principles, Valve and Port Timing Dia	agrams. Actual Cycles	an
their Analysis: Introduct	on, Comparison of Air Standard and Actual Cycles	s, Time Loss Factor,	Hea
Loss Factor, Exhaust Blo	w down Loss due to Gas exchange process, Volumet	tric Efficiency. Loss du	ae t
Rubbing Friction.			
MODULE -2	COMBUSTION IN IC ENGINES	13 Hour	rs
Combustion in SI Engine	es Normal Combustion and abnormal combustion, In	mportance of flame spe	eed
and effect of engine varia	ables, Type of Abnormal combustion, pre-ignition ar	nd knocking (explanat	ion
of) Fuel requirements and	l fuel rating, anti knock additives, combustion chamb	per – requirements, typ	pes.
Combustion in C.I. Engi	nes: Four stages of combustion, Delay period and i	its importance, Effect	of
engine variables, Diesel k	Inock, Need for air movement, open		
	hambers and nozzles used - fuel requirements and fue	el rating.	
MODULE-3	PERFORMANCE OF IC	10 Hour	ſS
	ENGINES		
Parameters of performance	e, measurement of cylinder pressure, fuel consumpti-	ion, air intake, exhaust	t gas
composition, Brake pow	er, Determination of frictional losses and indicated	power, Performance	test
Heat balance sheet.			
MODULE-4	COMPRESSORS	11 Hour	
RECIPROCATING CO	DMPRESSORS : Classification of compressors, F	Principle of operation	n o
reciprocatingcompressors	, work required, Isothermal efficiency volumetric	efficiency and effec	t o
clearance, multistage con	pression, under cooling, saving of work, minimum	work condition for m	ulti
stage compression.			
CENTRIFUGAL COM	PRESSORS: Mechanical details, principle of o	operation, velocity an	ıd
pressure variation, impell	er blade shape-losses, slip factor, power input factor,	pressure coefficient an	ıd
adiabatic coefficient, velo	city diagrams, power required.		
MODULE-5	REFRIGERATION SYSTEM	M 10 Hou	rs
Refrigeration System	n Components: Compressors, expansion devices, cor	ondensers, evaporators.	
•••	rigeration: Water vapour refrigeration systems, steam	•	

Vapour Absorption Refrigeration: Water vapour refrigeration systems, steam jet refrigeration; vapour absorption refrigeration systems, single effect and double effect vapour absorption systems.

MODULE-6	Air Conditioning	10 Hours
0	sychometric properties of air, psychometric processes, c ations, types of air conditioning systems. Demonstration	
r	elated to psychometric processes & HVAC systems.	
	Total hours:	64 Hours

 V. Ganesan (2011), I.C. Engines, 3rd edition, Tata McGraw-Hill, New Delhi,India.
 B.JohnHeywood(2011), internalcombustionenginefundamentals,2ndedition, TataMcGraw-Hill, NewDelhi.

3. Refrigeration and Air Conditioning, by Arora, McGraw-Hill education, 3rd edition, 2008.

4..Refrigeration and Air Conditioning, by RS khurmi, JK GUPTHA, SCHAND Publications, Revised Edition

2015.

Reference Book(s):

1. Mathur, Sharma (2008), IC Engines, 3rd edition, Dhanpat Rai & Sons, New Delhi, India.

2. R. K. Rajput (2011), Thermal Engineering, 18th edition, Lakshmi Publications, NewDelhi,India.

3. 3 Pulkrabek (2008), Engineering fundamentals of IC Engines, 2nd edition, Pearson Education.

		NARAYA	NA ENO	GINEERING	COLLEG	E: GUD	UR	
				PRODUCTI	ON TECH	NOLO	ĞΥ	R2020
Semester		Hours / V	Veek	Total	Credit		Max Mar	ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
	3	1	0	64	4	40	60	100
			CO	OURSE CON	TENT			
	MODU	LE – 1		CA	STING		12 H	[
:Steps invol	lved in mak	ing a castir	ig - Adv	antage of cas	sting and its	s applica	tions Patter	rns and Patter
making - T	Types of pat	terns - Ma	terials u	sed for patte	rns, patterr	n allowa	nces and thei	r construction
•	•			n of Gating sy				
L.	U,	C	C					
I	MODULE -	2	C	ASTING PR	OCESS			10 H
Methods of	f melting an	d types of	furnaces.	, Solidificatio	n of casting	gs, Solid	ification of p	ure metals and
	-	• •				-	-	casting desigr
-	-	-	-	•	• •		-	nd Investment
casting.	, I	I	11		0	U,	6	
-	MODULE-	3		WELDIN	NG			10 H
Classificati	on of weld	ing process	ses, type	s of welded	joints and	their c	haracteristics,	~
								Gas welding
Different ty	pes of flame	01	Oxy - A	cetylene Gas	cutting. Bas	sic princi	ples of Arc w	U
•	•	s and uses,	•	cetylene Gas Inert Gas we			•	U
metal arc w	•	s and uses, merged arc	welding,	•	lding- TIG		•	Gas welding, elding, Manual 10 H
metal arc w	elding, Sub 1 MODULE-4	s and uses, merged arc 4	welding,	Inert Gas we	lding- TIG ELDING	& MIG	welding.	elding, Manual
metal arc w Resistance	elding, Sub MODULE-4 welding, So	s and uses, merged arc 4 olid state	welding, FR welding	Inert Gas we RICTION W processes- H	lding- TIG ELDING Friction we	& MIG	welding. riction stir v	elding, Manua 10 H
metal arc w Resistance welding, Ex	elding, Sub MODULE-4 welding, So xplosive wel	s and uses, merged arc 4 blid state ding; Therr	welding, FR welding nit weld	Inert Gas we RICTION W processes- H ing, Plasma w	lding- TIG E LDING Friction we velding, La	& MIG	welding. riction stir v ing, electron	elding, Manua 10 H velding, Forge
metal arc w Resistance welding, Ez Soldering &	elding, Sub MODULE-4 welding, So xplosive wel z Brazing H	s and uses, merged arc 4 olid state ding; Therr leat affected	welding, FR welding nit weld d zones in	Inert Gas we RICTION W processes- H ing, Plasma w n welding; pr	lding- TIG ELDING Friction we velding, La e & post he	& MIG	welding. riction stir v ing, electron	elding, Manua 10 H velding, Forge beam welding netals, welding
metal arc w Resistance welding, Ex Soldering & defects - ca	elding, Sub MODULE-4 welding, So xplosive wel z Brazing H	and uses, merged arc 4 blid state ding; Therr leat affected redies - dest	welding, FR welding nit weld d zones in ructive a	Inert Gas we RICTION W processes- H ing, Plasma w n welding; pr	lding- TIG ELDING Friction we velding, La e & post he ctive testing	& MIG lding, F ser weld ating, W g of weld	welding. riction stir v ing, electron eldability of n	elding, Manua 10 H velding, Forge beam welding, netals, welding
metal arc w Resistance welding, Ez Soldering & defects - ca	elding, Sub a MODULE-4 welding, So xplosive wel z Brazing H uses and rem MODULE-5	s and uses, merged arc ding; Therr leat affected addies - dest	welding, FR welding nit weld: d zones in ructive a SHEI	Inert Gas we RICTION W processes- H ing, Plasma v n welding; pr ind nondestru ET METAL	lding- TIG ELDING Friction we velding, La e & post he ctive testing FORMING	& MIG Iding, F Iser weld ating, W g of weld	welding. riction stir v ing, electron eldability of n ls, Design of v	elding, Manua 10 H velding, Forge beam welding netals, welding velded joints.
metal arc w Resistance welding, E Soldering & defects - cau - Blanking	elding, Sub MODULE-4 welding, So plosive wel Brazing H uses and rem MODULE-5 and piercin	s and uses, merged arc 4 olid state ding; Therr leat affected redies - dest 5 g, Forces a	welding, FR welding nit weld: d zones in ructive a SHEI and pow	Inert Gas we RICTION W processes- H ing, Plasma w n welding; pr and nondestru ET METAL er requireme	Iding- TIG ELDING Friction we velding, La e & post he ctive testing FORMING nt in these	& MIG velding, Felding, Felding, Welding, Weldin	welding. riction stir v ing, electron eldability of n ls, Design of v	elding, Manua 10 H velding, Forge beam welding netals, welding velded joints. 12 H awing, Stretch
metal arc w Resistance welding, E Soldering & defects - cau - Blanking	elding, Sub MODULE-4 welding, So plosive wel Brazing H uses and rem MODULE-5 and piercin	s and uses, merged arc 4 olid state ding; Therr leat affected redies - dest 5 g, Forces a rgback and	welding, welding nit weld: d zones in ructive a SHEI and powe its remed	Inert Gas we RICTION W processes- H ing, Plasma w n welding; pr and nondestru ET METAL er requireme	lding- TIG ELDING Friction we velding, La e & post he ctive testing FORMING nt in these Spinning, T	& MIG Iding, F ser weld ating, W g of weld G operation Types of	welding. riction stir v ing, electron eldability of n ls, Design of v	elding, Manua 10 H velding, Forge beam welding netals, welding velded joints. 12 H awing, Stretch
metal arc w Resistance welding, E Soldering & defects - can - Blanking forming, Be	elding, Sub a MODULE-4 welding, So xplosive wel z Brazing H uses and rem MODULE-5 and piercin ending, Sprin	s and uses, merged arc 4 olid state ding; Thern leat affected nedies - dest 5 g, Forces a ngback and JLE-6	welding, welding nit weld: d zones in ructive a SHEI and powent its remed	Inert Gas we RICTION W processes- H ing, Plasma v n welding; pr und nondestru ET METAL er requireme lies, Coining, PROCESSIN	Iding- TIG ELDING Friction we velding, La e & post he ctive testing FORMING nt in these Spinning, T G OF PLA	& MIG ding, F ser weld ating, W g of weld G operatio Types of STICS:	welding. riction stir v ing, electron eldability of n s, Design of v ons, Deep dra presses and p	elding, Manua 10 H velding, Forge beam welding netals, welding velded joints. 12 H nwing, Stretch ress tools
metal arc w Resistance welding, E Soldering & defects - can - Blanking forming, Be	elding, Sub a MODULE-4 welding, So xplosive wel z Brazing H uses and rem MODULE-5 and piercin ending, Sprin	s and uses, merged arc 4 olid state ding; Thern leat affected nedies - dest 5 g, Forces a ngback and JLE-6	welding, welding nit weld: d zones in ructive a SHEI and powent its remed	Inert Gas we RICTION W processes- H ing, Plasma v n welding; pr und nondestru ET METAL er requireme lies, Coining, PROCESSIN	Iding- TIG ELDING Friction we velding, La e & post he ctive testing FORMING nt in these Spinning, T G OF PLA	& MIG ding, F ser weld ating, W g of weld G operatio Types of STICS:	welding. riction stir v ing, electron eldability of n ls, Design of v ons, Deep dra presses and p 10 H	elding, Manua 10 H velding, Forge beam welding netals, welding velded joints. 12 H nwing, Stretch ress tools ion molding.

- 1. . Manufacturing Processes for Engineering Materials Kalpakjian S and Steven R Schmid-Pearson Publ , 5th Edn.
- 2. Manufacturing Technology -Vol I- P.N. Rao- TMH
- 3. . Fundamentals of Modern Manufacturing Mikell P Groover- Wiley publ 3 rd Edition..

- 1. Manufacturing Science A.Ghosh & A.K.Malik East West Press Pvt. Ltd.
- 2. Process and materials of manufacture- Lindberg- PHI
- 3. Production Technology- R.K. Jain- Khanna 4. Production Technology-P C Sharma-S. Chand

		NARAYA	NA ENG	GINEERING	COLLEG	E: GUI	DUR		
		FUNDAM	MENTA	LS OF ENG	INEERING	G DESIG	GN		R2020
Semester		Hours / V	Week	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	SEE		TOTAL
	3	1	0	64	4	40	60		100
			C	OURSE CON	NTENT				
	MODU	LE – 1		INTRO	DUCTION	I	12 H	[
Design Co	nceptualizati	on and Ph	ilosophy	. Original. A	daptive. V	ariant a	nd Re-Design	. E	volution of
-	-			-	—		e cycle, Innov		
innovation							•••••••••		, 1 JP 00 01
	MODULE -	2		ANALYSI	S OF			10	H
		_	EN	GINEERIN					
Needs and	opportunitie	s, Vision a	nd Missi	ion of a conc	ept, Type of	f needs,	Technology S	5 - c	urve, Need
analysis, m	arket analysi	s and comp	etitive ai	nalysis, Kano	Diagrams, S	SWOT a	inalysis		
	MODULE-	3	PI	RODUCT DI				10	H
G ()	1.4	1 (1	1	DEVELOP		,·			TT1 ' 1 '
•	••	•	-	•	•		Empathize D	•	•
-			-	U.		0. 0	gn challenges,		
	-	-		-			n. Solution fir		-
						decision	making for n		-
	MODULE-4			OPTIMIZAT DESIG	N) H
-	-	-		•		t tests ,	Validation tes	ts C	omparison
tests – Org	anization of c	lesign conc	ept and c	lesign method	ls				
	MODULE-	5	RE	VERS ENGI	NEERING			12	2 H
Reverse e	ngineering i	n product	develop	oment: Reve	rsing engir	neering	methods, i	mpo	ortance of
		-	-			-	gn, safety cor	-	
design.	I	I	,			·			
	MODU	ILF-6	T	RECENT T	RENDS IN	J	10 H		
	MOD			DES			10 11		
Study of I	Product Deve	elopment- A	Agricultu			hines fo	r separation o	f co	rn seeds,
peeling of	groundnut	shells, hu	sk remo	ving from p	oaddy. Elec	ctrical:	Design of bu	ırgla	ır alarm,
speedomete	er, water leve	el indicator	, smart g	gates, smart l	ights. Desig	gn of ele	ctrical vehicle	es, u	nmanned
vehicles, de	esign principl	es in drone	s.						
							Total	h:	64 h
				Toyt Dool	(c)•				
1. Ott	o. K and Wo	od. K. Prod	luct Desi	Text Book gn, Pearson E		001.			
		,,00		0,arbon I					

- Pahl. G and Beitz. G, Engineering Design, Springer, 1996
- 3. An AVA Book, "Design Thinking", AVA Publishing, 2010.

4. Fundamentals of Engineering Design, Barry I. Hyman Prentice Hall/Pearson Education, 2002

5. Concepts in Engineering Design 1st Edition 2017 by Atif Aziz, New Age International (P) Ltd Publishers

		NARAYA	NA EN	GINEERING	COLLEG	E: GUE	OUR			
			PR	ODUCTION	PLANNIN	G CON	TROL	R2020		
Semester		Hours /	Week	Total	Credit		Max Mar	·ks		
-	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	1	0	64	4	40	60	100		
			C	OURSE CON	NTENT					
	MODU	LE – 1		INTRO	DUCTION	N	12 H	I		
batch and Operational	continuous- aspect-Du	-Product c rability a	levelopm nd depe	nent and de endability as	sign-Marke spect aesth	ting asp netic asp	ect – Func	production-job tional aspects consideration design.		
]	MODULE -	2		WORK ST	UDY			10 H		
Method	l study, basic	procedure	-Selectio	n-Recording	of process -	- Critical	analysis, Dev	velopment –		
		-		-	-		nent – Techni	-		
measur	ement – Tim	e study – P	roductio	n study – Wor	rk sampling	s – Synth	esis from stan	dard data –		
		F	Predetern	nined motion	time standa	rds.				
	MODULE-3	3	PR	RODUCT PL	ANNING			10 H		
Product pla	anning-Exter	nding the or	riginal pr	oduct inform	ation-Value	analysis	-Problems in	lack of product		
				planning	-					
	MODULE-4	1	PI	ROCESS PL	ANNING			10 H		
	Ŭ,	Ų	-			•	process planning- Steps in process			
planning-0	Quantity dete	rmination	in batch j	production-M	achine capa	acity, bal	ancing- Analy	sis of process		
		с	apabiliti	es in a multi p	product syst	em.				
	MODULE-5	5	INV	ENTORY C	CONTROL			12 H		
Inventory	control-Purp	ose of hold	ing stock	-Effect of der	mand on inv	ventories	-Ordering pro	cedures. Two		
-	-		-				tity and econo			
•	C C		ABC ana	lysis – Record	der procedu	ire	•			
					-					
	MODU	JLE-6		RECENT T	RENDS IN	N PPC	10 H			
-Introd	luction to con	nputer inte	grated pi	oduction plar	ning syster	ns- elem	ents of JUST	IN TIME		
		*	. .	ndamentals of	•••					
		~ - ~ - ~					Total	h: 64 h		
							Total	II. 04 II		
					<u> </u>					
3. Chary.	S.N. Theory	u and Duch	ome in D	Text Book		M	omont Tata N			
5. Chary. 1995.	5.14., 111001	y and Probl		Toduction and	1 Operation	s Manag	ement, Tata w	IcGraw Hill,		

John Wiley and Sons, 2000. 3. Jain. K.C. and Aggarwal. L.N., Production Planning Control and Industrial Management, Khanna

Publishers, 1990.

- 1. James. B. Dilworth, Operations management Design, Planning and Control for manufacturing and services Mcgraw Hill International edition 1992.
- 2. Martand Telsang, Industrial Engineering and Production Management, First edition, S. Chand and Company, 2000.

	NA	ARAYAN	A ENGINE	ERING C	OLLEGE:	:GUDUR		
]	MATERIA	LS TECH	NOLOGY		R2020
Semester		H / V	Veek	Total	Credit		Max M	larks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
-	3	1	0	64	4	40	60	100
			С	OURSE C	ONTENT			
	MODUL	E – 1		STRUCTU	URE OF M	ETALS		10 H
			•		0	U U	oundaries,	effect of grain
boundaries	on the prop	erties of m	etal / alloys	s – determir	nation of gra	ain size.		
		-	•		es of solid	d solutions,	Hume R	otherys rules,
	e alloy phas	ses, and ele						
MO	DULE -2		EQ	UILIBRIU	M OF DIA	GRAMS		12 H
-				-	Ũ		•	loy systems,
-	-				-			ctic systems,
congruent	melting in	termediate	phases, p	eritectic re	action. Tra	insformation	ns in the s	solid state –
allotropy, e	eutectoid, p	eritectoid 1	reactions, p	hase rule, 1	relationship	between ec	quilibrium o	diagrams and
properties	of alloys. S	tudy of im	portant bin	ary phase d	liagrams of	Cu-Ni-, Al-	-Cu, Bi-Cd	, Cu-An, Cu-
Sn andFe-F	Fe3C.							
Μ	IODULE-3			META	LS & ALI	LOYS		10 H
Cast Irons	s and Steel	s :Structur	e and prop	erties of W	hite Cast i	ron, Mallea	ble Cast ire	on, grey cast
iron, Spher	iodal graph	ite cast iro	n, Alloy ca	st irons. Cla	assification	of steels, str	ructure and	properties of
plain carbo	on steels, Lo	w alloy ste	els, Hadfie	ld mangane	se steels, to	ol and die s	teels.	
			: Structure	and proper	ties of copp	er and its all	loys, Alumi	nium and its alloys,
	ndits alloys. IODULE-4							10 H
141	IODULE-4				'REATME ALLOYS	NI OF		10 11
Effect of all	loying elem	nents on Ir	on – Iron			ling, norma	lizing, Har	dening, TTT
				-		-	-	nt, Cryogenic
treatment o					-	-	-	
Μ	IODULE-5		C	ERAMIC	MATERIA	LS		10 H
Ceramic		•		cs, glasses,	cermets, ab	orasive m	aterials,	-definition,
	and applica							
Μ	IODULE-6		CO	MPOSITE	C MATERI	ALS		12 H
Composite 3	Materials:	Classificat	ion of comp	posites, vari	ous method	ls of compo	nent mafact	ure of
-					ced materia	ls, metal cer	ramic mixtu	ires, metal –
matrix com	posites and	Carbon –	Carbon con	nposites.				
							Total h:	64 h
							i Juai II.	

1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017

2. A Text of Essential of Materials science and engineering/ DonaldR.Askeland/Thomson.2013

3. .Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

- 1. Science of Engineering Materials / B.K.Agarwal,2017.
- 2. Engineering materials and metallurgy/R. K. Rajput/S.Chand,2015.
- 3. Engineering Materials and Their Applications R. A Flinn and P K Trojan / JaicoBooks 1995

		NARAYA	NA ENG	GINEERING	G COLLEG	E: GUI	DUR		
				(CAD/CAM			F	R2020
Semester		Hours / V	Veek	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	SEE	r	TOTAL
	3	1	0	64	4	40	60		100
			C	OURSE CON	NTENT				
	MODU	LE – 1			r view of D/CAM		12 H		
Evaluation Graphics: (transformat	criteria. CA Co-ordinate s	D standard systems, Gr g, hidden lin	s, CAD aphics p ne / surfa	data structu	re, Data ba ions, 2D an colour, shadi	ase mana ad 3D tra ang.	n an Industria agement syste ansformations,	ms. (Computer ogeneous
wire frame	-	ynthetic cu		-	-		arious constru nodeling, syntl		
	MODULE-3	3	S	SOLID MOD	ELING			10 I	H
geometry, a	analytical soli	id modeling			•	represe	ntations, cons		
	MODULE-4				YSTEMS			10]	
-	-			chining systems, types of adaptive control. CNC Part P				-	-
				•		-	sation, length tion statements	-	
-				ement program	•			, por	r process
	MODULE-			OUP TECHN FMS	-	-		12	H
: Part Fai	mily, Classifi	cation and	Coding,	advantages &	limitations	, Group	technology ma	chine	e cells,
benefits. FI	MS: Introduc	tion, compo	onents of	FMS, mater	ial handling	systems	, Computer co	ntrol	systems,
advantage	es. Computer	Aided Qua	lity Con	trol: Termino	logy in Qua	lity cont	rol, Inspection	and	testing,
Contac	ct inspection	methods - o	ptical a	nd non optica	l, integration	n of CA	QC with CAD	and C	CIM
	MODU	JLE-6		COMPUTE ROCESSES 1		J	10 H		
Retrieval t	type and Gei	nerative typ					Computer ge	nerat	ed time
standards.	Computer in	tegrated pr	oduction	planning: C	Capacity pla	nning, s	hop floor con	trol,	MRP-I,
	-					-	onfigurable ma		
	manufacturi				•		C		C .
							Total	h:	64 h
				Text Book	(s):				
1. CA	D/CAM, A Z	Zimmers&P	.Groove	r, PE, PHI					

CAD/CAM, A Zimmers&P.Groover, PE, PHI
 CAD/CAM-Principles and applications, P.N. Rao, TMH, 3rd edition, 2010

- 1. Computer Aided Design & Manufacturing, Lalit Narayan/Mallikarjuna Rao/M.M.M.Sarcar.PHI(2015)
- 2. Automation, Production systems & Computer integrated Manufacturing ,Groover, P.E
- 3. CAD/CAM/CIM, Radhakrishnan and Subramaniah, New Age, 3rd edition, 2008
 - 4. Principles of Computer Aided Design and Manufacturing, FaridAmirouche, Pearson

	NAI	RAYANA	ENGINI	EERING CO	LLEGE: (GUDUR			
RENEWABLE ENERGY SOURCE							CES	R2020	
Semester		Hours /	Week	Total	Credit		Max Ma	rks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
	3	1	0	64	4	40	60	100	
			COUR	SE CONTE	T				
MODULE – 1			SOLAR ENERGY					12 H	
Classification and p	otential of o	energy sou	rces, Im	portance of	renewable.	energy	sources and	energy chain	
Principles of energy of	conservation.								
Solar constant and s	olar radiation	n geometry	Solar ti	me and day l	enoth Feti	mation of	f monthly ave	erane daily tota	
radiation on horizont				•	-		-		
Sunshine recorder.	ar surface an	u thteu sur	lace, Mea	isurement of	solal laula	1011 - 1 yi	anometer, i y	menometer and	
			S		FCTOR	1		10 H	
MODULE -2 SOLAR COLLECTORS Liquid flat- Plate collector - Air heater and concentrating collector and Different me						mathada of			
-				-		merent	methous of a	storage system	
Sensible, latent heat a		•			6			·····	
Methods of storing solar energy, Solar water heating, Impact of conventional energy sources on environment Applications of solar thermal energy: Solar Refrigeration, Solar thermal power generation, Solar distillation, Solar									
**			0		-	er genera	ition, Solar d	istillation, Sola	
space heating and Sp	-	-					-	10.77	
MODU				ERGY & B				10 H	
Origin of wind, appl		-	-		-				
Types of blades, u	pwind and	downwind	turbine	s, vertical a	axis Wind	turbines	- Savonius	type, Darrieus	
type.Photosynthesis J	process, Class	sification of	f biogas _l	plants, Types	of Digester	s – KVI	С		
MODULE-4			GEOTHERMAL ENERGY & OCEAN ENERGY					10 H	
Introduction, geother	rmal sources	s - Hydro	thermal			ed resou	rces, hot dry	y rocks, Power	
generation through				-	-				
geothermal energy, e	nvironmental	l considerat	ion.		-		-		
Occor thermal En		nion I or	nhart'a l		oonvoraio	n toohn	ologioo Clo	uda avala an	
Ocean thermal End Anderson cycle; Tid							-	-	
basin systems.	ual ellergy c	01100151011	- muou	uction, tiuai	energy co	110615101	i - single ba		
-									
MODU	LE-5		DIREC	T ENERGY	CONVER	SION		12 H	
Need for DEC, Carno	ot cycle, limit	tations, and	principle	es of DEC.					
Thermo-electric gene	erators, Seebe	eck, Peltier	and Joule	e Thomson ef	fects, Figur	e of meri	it, materials,	applications,	
MHD generators, pri	nciples, disso	ciation and	ionizatio	on, hall effect	, magnetic	flux, MH	ID accelerato	r,	
MHD Engine, pow	•				•				
principles, faraday"s	U	•		0.		-	-	,	
	ODULE-6	5	ENV	IRONMEN	TAL IMP	ACT OF			
1 1 1.1	1 1 1			ENERGY C					
ozone layer depletio	-								
water pollution, land	1 degradation	n, thermal p	pollution,	, Sustamable	energy, pr	omising	technologies,	development	
pathways.									
							Tota	h: 64 h	

- 1. Non-Conventional Energy Sources /G.D. Rai
- 2. Energy Resources Utilization and Technologies, Anjaneyulu Yerramilli, Francis Tuluri, BS Publications, 2012
- 3. Sukhatme S.P. and J.K.Nayak, Solar Energy Principles of Thermal Collection and Storage, Tata McGraw Hill, New Delhi, 2008.

- 1. Renewable Energy Sources/ Twidell & Weir
- 2. Non Conventional Energy Resources, B.H.Khan, McGrawHIll, 2015
- 3. Non-Conventional Energy/ Ashok V Desai/ Wiley Eastern
- 4. J.A. Duffie and W.A. Beckman, Solar Energy Thermal Processes, John Wiley, 2001